Optics and Precision Engineering, Volume. 30, Issue 14, 1764(2022)
Lightweight pedestrian detection for multiple scenes
[1] YADAV R P, SENTHAMILARASU V, KUTTY K et al. Implementation of robust HOG-SVM based pedestrian classification[J]. International Journal of Computer Applications, 114, 10-16(2015).
[2] SABZMEYDANI P, MORI G. Detecting pedestrians by learning shapelet features[C]. MN, 1-8(2007).
[3] CAO J, PANG Y, XIE J et al. From handcrafted to deep features for pedestrian detection: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(2021).
[4] CAI Z, FAN Q, FERIS R S et al. A unified multi-scale deep convolutional neural network for fast object detection[C], 354-370(2016).
[5] YANG P Y, ZHANG G F, WANG L et al. A part-aware multi-scale fully convolutional network for pedestrian detection[J]. IEEE Transactions on Intelligent Transportation Systems, 22, 1125-1137(2021).
[6] [6] 6邹梓吟, 盖绍彦, 达飞鹏, 等. 基于注意力机制的遮挡行人检测算法[J]. 光学学报, 2021, 41(15): 1515001. doi: 10.3788/aos202141.1515001ZOUZ Y, GAIS Y, DAF P, et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2021, 41(15): 1515001.(in Chinese). doi: 10.3788/aos202141.1515001
[7] WU J L, ZHOU C L, YANG M et al. Temporal-context enhanced detection of heavily occluded pedestrians[C], 13427-13436(2020).
[8] [8] 8时小虎, 吴佳琦, 吴春国, 等.基于残差网络的弯道增强车道线检测方法[J/OL].吉林大学学报(工学版):1-9. [2022-04-02]. DOI: 10.13229/j.cnki.jdxbgxb20210618.SHIX H, WUJ Q, WUC G, et al. Residual network based curve enhanced lane detection method [J/OL].Journal of Jilin University(Engineering and Technology Edition):1-9. [2022-04-02]. DOI: 10.13229/j.cnki.jdxbgxb20210618. (in Chinese)
[9] GE Z, LIU S, WANG F et al. Yolox: Exceeding yolo series in 2021[J]. arXiv preprint arXiv, 2021(2017).
[10] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).
[11] LIU Z, LI J G, SHEN Z Q et al. Learning efficient convolutional networks through network slimming[C], 2755-2763(2017).
[12] [12] 12任彬, 王宇庆, 丛振, 等. 基于MPSOC的航空图像目标检测系统设计[J]. 液晶与显示, 2021, 36(7): 1006-1017. doi: 10.37188/CJLCD.2020-0310RENB, WANGY Q, CONGZ, et al. Design of aerial image target detection system based on MPSOC[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(7): 1006-1017.(in Chinese). doi: 10.37188/CJLCD.2020-0310
[13] [13] 13周经美, 王钰, 宁航, 等. 面向多元场景结合GLNet的车道线检测算法[J]. 中国公路学报, 2021, 34(7): 118-127. doi: 10.3969/j.issn.1001-7372.2021.07.010ZHOUJ M, WANGY, NINGH, et al. Lane detection algorithm based on GLNet for multiple scenes[J]. China Journal of Highway and Transport, 2021, 34(7): 118-127.(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.07.010
[14] BABAKHANI P, ZAREI P. Automatic gamma correction based on average of brightness[J]. Advances in Computer Science: an International Journal, 4, 156-159(2015).
[15] WANG S G, CHENG J, LIU H J et al. PCN: part and context information for pedestrian detection with CNNs[J]. arXiv preprint arXiv, 2018.
Get Citation
Copy Citation Text
Yunzuo ZHANG, Wenbo LI, Wei GUO, Zhouchen SONG. Lightweight pedestrian detection for multiple scenes[J]. Optics and Precision Engineering, 2022, 30(14): 1764
Category: Information Sciences
Received: Apr. 19, 2022
Accepted: --
Published Online: Sep. 6, 2022
The Author Email: Yunzuo ZHANG (zyz2016@stdu.edu.cn)