Journal of Applied Optics, Volume. 44, Issue 4, 801(2023)
Hyperspectral concealed target detection based on ACE algorithm
[2] [2] LIU Yao. Research on hyperspectral band selection algorithm based on neighborhood rough set[D]. Harbin: Harbin Engineering University, 2017.
[7] [7] CHANG C I . Spectral information divergence for hyperspectral image analysis[C]// IGARSS '99 Proceedings on Geoscience and Remote Sensing Symposium. New York: IEEE, 1999: 509-511.
[8] [8] LIU C, LI J, WANG G, et al. Hyperspectral feature mapping classification based on mathematical morphology[J]. SPIE, 2016, 10255: 102552A-102552A-8.
[9] [9] MANOLAKIS D , PIEPER M , TRUSLOW E , et al. The remarkable success of adaptive cosine estimator in hyperspectral target detection[C]// Proceedings of SPIE on Defense, Security & Sensing. [S. l]: SPIE, 2013.
[16] [16] WU Z Y, SU H J, ZHENG P. Hyperspectral anomaly detection using collaborative representation with PCA remove outlier[C]// 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Newyork: IEEE, 2018: 8747083.
Get Citation
Copy Citation Text
Xuhui ZHANG, Hong WEI, Xiying HUANG, Lei SONG, Peizhen LIU, Tao LI, Jiaoying WANG, Kailuan XU, Xuan LIU, Jie WANG. Hyperspectral concealed target detection based on ACE algorithm[J]. Journal of Applied Optics, 2023, 44(4): 801
Category: Research Articles
Received: May. 10, 2022
Accepted: --
Published Online: Aug. 10, 2023
The Author Email: ZHANG Xuhui (13260875675@163.com)