Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 235(2023)
Research Progress on Improvement for Shuttle Effect of Aqueous Zinc Iodine Battery
[1] [1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29.
[2] [2] CHOW J, KOPP R J, PORTNEY P R. Energy resources and global development[J]. Science, 2003, 302(5650): 1528-1531.
[5] [5] TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nat Energy, 2016, 1: 16114.
[6] [6] XU J, DOU Y, WEI Z, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries[J]. Adv Sci, 2017, 4(10): 1700146.
[8] [8] SUN S, LIU B, ZHANG H, et al. Boosting energy storage via confining soluble redox species onto solid-liquid interface[J]. Adv Energy Mater, 2021, 11(8): 2003599.
[9] [9] LIN D, LI Y. Recent advances of aqueous rechargeable zinc-iodine batteries: Challenges, solutions, and prospects[J]. Adv Mater, 2022, 34(23): 2108856.
[10] [10] HE Y, LIU M, ZHANG J. Rational modulation of carbon fibers for high-performance zinc-iodine batteries[J]. Adv Sustain Syst, 2020, 4(11): 2000138.
[11] [11] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nat Energy, 2016, 1: 16119.
[12] [12] ZHAO Q, LU Y, ZHU Z, et al. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode[J]. Nano Lett, 2015, 15(9): 5982-5987.
[13] [13] SONIGARA K K, ZHAO J, MACHHI H K, et al. Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I2 battery[J]. Adv Energy Mater, 2020, 10(47): 2001997.
[14] [14] DONG H, LI J, GUO J, et al. Insights on flexible zinc-ion batteries from lab research to commercialization[J]. Adv Mater, 2021, 33(20): 2007548.
[15] [15] WANG Z, HUANG J, GUO Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes[J]. Joule, 2019, 3(5): 1289-1300.
[16] [16] MA L, YING Y, CHEN S, et al. Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities[J]. Angew Chem Int Ed, 2021, 60(7): 3791-3798.
[17] [17] YANG H, QIAO Y, CHANG Z, et al. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries[J]. Adv Mater, 2020, 32(38): 2004240.
[18] [18] TUREKIAN K K, WEDEPOHL K H. Distribution of the elements in some major units of the earth's crust[J]. Geol Soc Am Bull, 1961, 72(2): 175.
[19] [19] LI X, WANG S, WANG T, et al. Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries[J]. Nano Energy, 2022, 98: 107278.
[20] [20] PAN H, LI B, MEI D, et al. Controlling solid-liquid conversion reactions for a highly reversible Aqueous zinc-iodine battery[J]. ACS Energy Lett, 2017, 2(12): 2674-2680.
[21] [21] LI X, LI N, HUANG Z, et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement[J]. Adv Mater, 2021, 33(8): 2006897.
[22] [22] BAI C, CAI F, WANG L, et al. A sustainable aqueous Zn?I2 battery[J]. Nano Res, 2018, 11(7): 3548-3554.
[23] [23] LI Y, LIU L, LI H, et al. Rechargeable aqueous zinc-iodine batteries: Pore confining mechanism and flexible device application[J]. Chem Commun, 2018, 54(50): 6792-6795.
[24] [24] YU D, KUMAR A, NGUYEN T A, et al. High-voltage and ultra-Stable aqueous zinc-iodine battery enabled by N-doped carbon materials: revealing the contributions of nitrogen configurations[J]. ACS Sustain Chem Eng, 2020, 8(36): 13769-13776.
[25] [25] CHAI S, YAO J, WANG Y, et al. Mediating iodine cathodes with robust directional halogen bond interactions for highly stable rechargeable Zn-I2 batteries[J]. Chem Eng J, 2022, 439: 135676.
[26] [26] LIU W, LIU P, LYU Y, et al. Advanced Zn-I2 battery with excellent cycling stability and good rate performance by a multifunctional iodine host[J]. ACS Appl Mater Interfaces, 2022, 14(7): 8955-8962.
[27] [27] JIN X, SONG L, DAI C, et al. A flexible aqueous zinc-iodine microbattery with unprecedented energy density[J]. Adv Mater, 2022, 34(15): 2109450.
[28] [28] MIAO X, CHEN Q, LIU Y, et al. Performance comparison of electro-polymerized polypyrrole and polyaniline as cathodes for iodine redox reaction in zinc-iodine batteries[J]. Electrochim Acta, 2022, 415: 140206.
[29] [29] LIN D, RAO D, CHIOVOLONI S, et al. Prototypical study of double-layered cathodes for aqueous rechargeable Static Zn?I2 batteries[J]. Nano Lett, 2021, 21(9): 4129-4135.
[30] [30] ZHANG L, ZHANG M, GUO H, et al. A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries[J]. Adv Sci, 2022, 9(13): 2105598.
[31] [31] ZHANG S, HAO J, LI H, et al. Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries[J]. Adv Mater, 2022, 34(23): 2201716.
[32] [32] LI Z, WU X, YU X, et al. Long-life aqueous Zn?I2 battery enabled by a low-cost multifunctional zeolite membrane separator[J]. Nano Lett, 2022, 22(6): 2538-2546.
[33] [33] YANG Y, LIANG S, LU B, et al. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc-iodine battery[J]. Energy Environ Sci, 2022, 15(3): 1192-1200.
[34] [34] LU K, ZHANG H, SONG B, et al. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc?iodine battery[J]. Electrochim Acta, 2019, 296: 755-761.
[35] [35] XU J, WANG J, GE L, et al. ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries[J]. J Colloid Interface Sci, 2022 610: 98-105.
[37] [37] HE Y, LIU M, CHEN S, et al. Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn-I2 batteries[J]. Sci China Chem, 2022, 65(2): 391-398.
[39] [39] XU J, MA W, GE L, et al. Confining iodine into a biomass-derived hierarchically porous carbon as cathode material for high performance zinc-iodine battery[J]. J Alloys Compd, 2022, 912: 165151.
[40] [40] YAN L, LIU T, ZENG X, et al. Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery[J]. Carbon, 2022, 187: 145-152.
[41] [41] WU Z, WANG S, WANG R, et al. Carbon nanotubes as effective interlayer for high performance Li-I2 batteries: Long cycle life and superior rate performance[J]. J Electrochem Soc, 2018, 165(5): A1156-A1159.
[43] [43] WANG F, LIU Z, YANG C, et al. Fully Conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability[J]. Adv Mater, 2020, 32(4): 1905361.
[44] [44] HUBER F, BERWANGER J, POLESYA S, et al. Chemical bond formation showing a transition from physisorption to chemisorption[J]. Science, 2019, 366(6462): 235-238.
[45] [45] CAVALLO G, METRANGOLO P, MILANI R, et al. The halogen bond[J]. Chem Rev, 2016, 116(4): 2478-2601.
[46] [46] SUN C, SHI X, ZHANG Y, et al. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading[J]. ACS Nano, 2020, 14(1): 1176-1184.
[47] [47] MENG Z, TAN X, ZHANG S, et al. Ultra-stable binder-free rechargeable Li/I2 batteries enabled by "Betadine'' chemical interaction[J]. Chem Commun, 2018, 54(87):12337-12340.
[48] [48] WU W, LI C, WANG Z, et al. Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries[J]. Chem Eng J, 2022, 428: 131283.
[49] [49] ZENG X, MENG X, JIANG W, et al. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries[J]. ACS Sustain Chem Eng, 2020, 8(38): 14280-14285.
[50] [50] ZOU Y, LIU T, DU Q, et al. A four-electron Zn?I2 aqueous battery enabled by reversible I-/I2/I+ conversion[J]. Nat Commun, 2021, 12(1): 170.
[51] [51] LI X, LI M, HUANG Z, et al. Activating the I0/I+ redox couple in an aqueous I2?Zn battery to achieve a high voltage plateau[J]. Energy Environ Sci, 2021,14(1): 407-413.
[52] [52] LI W, WANG K, JIANG K. A high energy effciency and long life aqueous Zn-I2 battery[J]. J Mater Chem A, 2020, 8(7): 3785-3794.
[53] [53] CHEN C, LI Z, XU Y, et al. High-energy density aqueous zinc-iodine batteries with ultra-long cycle life enabled by the ZnI2 additive[J]. ACS Sustain Chem Eng, 2021, 9(39): 13268-13276.
[55] [55] HONG J J, ZHU L, CHEN C, et al. A dual plating battery with the iodine/[ZnIx(OH2)4-x]2-x cathode[J]. Angew Chem Int Ed, 2019, 58(44): 15910-15915.
[56] [56] MACHHI H K, SONIGARA K K, BARIYA S N, et al. Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous zinc-I2 batteries[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21426-21435.
[57] [57] SHANG W, ZHU J, LIU Y, et al. Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes[J]. ACS Appl Mater Interfaces, 2021, 13(21): 24756-24764.
[58] [58] YUAN Z, DUAN Y, ZHANG H, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium ?ow batteries[J]. Energy Environ Sci, 2016. 9(2): 441-447.
[59] [59] TANGTHUAM P, PIMOEI J, MOHAMAD A A, et al. Carboxymethyl cellulose-based polyelectrolyte as cationic exchange membrane for zinc?iodine batteries[J]. Heliyon, 2020, 6(10): e05391.
Get Citation
Copy Citation Text
JIANG Hedong, SUN Lingling, ZHU Honglin, HUANG Dandan, WANG Yanxiang, LI Jiake, GUO Pingchun, ZHU Hua. Research Progress on Improvement for Shuttle Effect of Aqueous Zinc Iodine Battery[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 235
Category:
Received: Aug. 19, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: Hedong JIANG (hdjiang19@163.com)