Optics and Precision Engineering, Volume. 30, Issue 13, 1591(2022)

Detection of foreign object debris on night airport runway fusion with self-attentional feature embedding

Zifen HE, Guangchen CHEN, Sen WANG, Yinhui ZHANG*, and Linwei GUO
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming650500, China
  • show less
    Figures & Tables(17)
    CTPNet Network Structure
    Comparison of bottleneck structures
    Multi-head self attention structure
    Fitting result of real box and prediction box
    CIoU loss of signal
    NFOD dataset images and annotations
    Target instance scale distribution
    Visualization results of mean average precision
    Test result visualization
    Visualization of characteristic image
    • Table 1. Parameters of LRCP20680_1080P camera

      View table
      View in Article

      Table 1. Parameters of LRCP20680_1080P camera

       
      传感器规格高级COMS感光芯片 1/2.7 inch
      像元尺寸3 μm×3 μm
      最低工作照度0.051 lx
      速度30 frame/s
      输出分辨率1 280×720
    • Table 2. Initial candidate box size of detect layers

      View table
      View in Article

      Table 2. Initial candidate box size of detect layers

      检测层聚类前聚类后
      20×20(10, 13), (16,30), (33, 23)(6, 8), (10,15), (12, 24)
      40×40(30, 61), (62, 45), (59, 119)(16, 18), (22, 27), (33, 16)
      80×80(116, 90), (156, 198), (373, 326)(37, 77), (42, 35), (66, 68)
    • Table 3. Result of ablation experiments

      View table
      View in Article

      Table 3. Result of ablation experiments

      模 型GIoUK-meansCIoUTransformer BottleNeck

      Weight

      /MB

      Speed/

      (frame·s-1

      mAP

      /%

      YOLOv5+GIoU14.441.882.9
      YOLOv5+K-means+ GIoU14.443.283.6
      YOLOv5+K-means+CIoU14.442.584.3
      YOLOv5+K-means+CIoU+TransformerBotteNeck14.438.088.1
    • Table 4. Comparison of effect of subspace number of self-attentional branches

      View table
      View in Article

      Table 4. Comparison of effect of subspace number of self-attentional branches

      Model

      Speed/

      (frame·s-1

      Weight

      /MB

      mAP

      (%)

      Plier

      (%)

      Screwdriver

      (%)

      Strapping_tape

      (%)

      Nail

      (%)

      Sheetmetal

      (%)

      Spanner

      (%)

      Branch

      (%)

      Nut

      (%)

      Block_rubber

      (%)

      CSPTNet-1H41.514.487.291.880.783.881.690.892.075.689.387.2
      CSPTNet-2H39.414.487.281.791.085.778.587.290.074.498.098.1
      CSPTNet-4H38.014.488.186.993.377.774.095.694.483.596.191.5
      CSPTNet-8H28.514.487.182.586.092.383.694.090.166.289.987.1
      CSPTNet-16H20.614.484.179.686.181.280.491.194.576.682.584.7
    • Table 5. Comparative experiment results of attention mechanism

      View table
      View in Article

      Table 5. Comparative experiment results of attention mechanism

      Model

      Speed/

      (frame·s-1

      Weight

      /MB

      mAP

      (%)

      Plier

      (%)

      Screwdriver

      (%)

      Strapping_tape

      (%)

      Nail

      (%)

      Sheetmetal

      (%)

      Spanner

      (%)

      Branch

      (%)

      Nut

      (%)

      Block_rubber

      (%)

      SE40.61576.577.162.870.577.590.885.472.257.594.5
      CoordAtt39.014.577.670.374.581.679.489.778.656.676.290.6
      CBAM42.014.579.967.182.480.477.492.586.365.875.591.3
      ChannleAtt45.014.580.766.775.781.484.188.590.071.778.989.0
      ECA42.714.883.769.185.783.781.489.887.872.684.598.6
      SAM41.814.585.485.986.182.582.985.895.176.482.491.5
      MHSA38.014.488.186.993.377.774.095.694.483.596.191.5
    • Table 6. Effect comparison of bottleneck modules

      View table
      View in Article

      Table 6. Effect comparison of bottleneck modules

      ModelSpeed/(frame·s-1

      Weight

      /MB

      mAP

      (%)

      Plier

      (%)

      Screwdriver

      (%)

      Strapping_tape

      (%)

      Nail

      (%)

      Sheetmetal

      (%)

      Spanner

      (%)

      Branch

      (%)

      Nut

      (%)

      Block_rubber

      (%)

      YOLOv5-ST41.214.782.466.482.377.076.187.490.782.986.692.0
      YOLOv5-Ghost47.513.283.575.385.882.580.590.491.183.772.789.8
      YOLOv5-CSP43.914.685.090.386.787.078.188.989.170.385.488.9
      CSPTNet38.014.488.186.993.377.774.095.694.483.596.191.5
    • Table 7. Comparison of model effects

      View table
      View in Article

      Table 7. Comparison of model effects

      ModelSpeed/(frame·s-1

      Weight

      /MB

      mAP

      (%)

      Plier

      (%)

      Screwdriver

      (%)

      Strapping_tape

      (%)

      Nail

      (%)

      Sheetmetal

      (%)

      Spanner

      (%)

      Branch

      (%)

      Nut

      (%)

      Block_rubber

      (%)

      YOLOv3-tiny49.717.430.340.59.026.422.259.342.4013.559.1
      VarifocalNet14.9261.452.870.756.769.52.842.878.275.31.477.4
      Faster R-CNN19.9330.665.688.972.087.320.753.785.480.621.780.5
      Sparse R-CNN17.2130073.085.365.793.847.172.879.179.359.274.5
      TOOD16.6255.875.184.081.590.049.862.390.980.960.081.8
      YOLOx14.871.978.6992.681.597.556.187.898.083.323.887.6
      YOLOv339.519.482.959.981.388.671.194.587.775.396.591.5
      YOLOv541.814.482.977.872.482.576.688.589.882.376.299.5
      Ours38.014.488.186.993.377.77495.694.483.596.191.5
    Tools

    Get Citation

    Copy Citation Text

    Zifen HE, Guangchen CHEN, Sen WANG, Yinhui ZHANG, Linwei GUO. Detection of foreign object debris on night airport runway fusion with self-attentional feature embedding[J]. Optics and Precision Engineering, 2022, 30(13): 1591

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jan. 5, 2022

    Accepted: --

    Published Online: Jul. 27, 2022

    The Author Email: ZHANG Yinhui (yinhui_z@163.com)

    DOI:10.37188/OPE.20223013.1591

    Topics