Infrared and Laser Engineering, Volume. 49, Issue 12, 20201052(2020)

Review of random laser research (Invited)

Wenyu Du1, Zhijia Hu2、*, Zhigang Cao2, Guosheng Zhang1, Yan Wang1, Weidong Luo1, and Benli Yu1
Author Affiliations
  • 1Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Materials Science, Anhui University, Hefei 230601, China
  • 2Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Materials Science, Anhui University, Hefei 230601, China
  • show less
    References(220)

    [1] R V Ambartsumyan, P G Kryukov, V C Letokhov. Dynamics of emission line narrowing for a laser with nonresonant feedback. Journal of Experimental and Theoretical Physics, 6, 1129-1134(1967).

    [2] R V Ambartsumyan, P G Kryukov, V C Letokhov. Statistical emission properties of a nonresonant Feedback laser. Journal of Experimental and Theoretical Physics, 6, 1109-1114(1968).

    [3] V S Letokhov. Generation of light by a scattering medium with negative resonance absorption. Journal of Experimental and Theoretical Physics, 4, 835-840(1968).

    [5] D S Wiersma, M P Van-Albada, A Lagendijk. Random laser?. Nature, 373, 203-204(1995).

    [15] Y Wan, L Deng. Pump-controlled plasmonic random lasers from dye-doped nematic liquid crystals with TiN nanoparticles in non-oriented cells. Applied Sciences, 10, 199(2020).

    [20] W C Chen, J H Shiao, T L Tsai. Multiple scattering from electrospun nanofibers with embedded silver nanoparticles of tunable shape for random lasers and white-light-emitting diodes. ACS Applied Materials & Interfaces, 12, 2783-2792(2019).

    [22] X Li, H Liu, X Xu. Lotus-leaf-inspired flexible and tunable random laser. ACS Applied Materials & Interfaces, 12, 10050-10057(2020).

    [26] H Lu, L Yang, L Xia. Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal. Liquid Crystals, 1-8(2020).

    [48] C M Soukoulis, X Jiang, J Y Xu. Dynamic response and relaxation oscillations in random lasers. Physical Review B, 65, 041103(2002).

    [50] X Jiang, C M Soukoulis. Localized random lasing modes and a path for observing localization. Physical Review E, 65, 025601(2002).

    [55] J Herrmann, B Wilhelmi. Mirrorless laser action by randomly distributed feedback in amplifying disordered media with scattering centers. Applied Physics B: Lasers & Optics, 66, 305-312(1998).

    [60] A F Ioffe, A R Regel. Non-crystalline, amorphous and liquid electronic semiconductors. Prog Semicond, 4, 237-291(1960).

    [61] O Keller. On the theory of spatial localization of photons. Physics Reports, 411, 1-232(2005).

    [85] [85] Synergetics H H. Selfganizing Systems[M] Boston, MA: Springer, 1987: 417434.

    [97] N Ghofraniha, I Viola, Maria F Di. Experimental evidence of replica symmetry breaking in random lasers. Nature Communications, 6, 1-8(2015).

    [116] [116] Agrawal G P. FiberOptic Communication Systems[M]. US: John Wiley & Sons, 2012.

    [117] [117] Babin S A. Rom fiber laser based on Rayleigh scattering: Basic principles experimental results[C]Photonics Global Conference, IEEE, 2010: 15.

    [118] [118] Hulst H C, Hulst H C. Light Scattering by Small Particles[M]. US: Courier Cpation, 1981.

    [120] [120] Boyd R W. Nonlinear Optics[M]. 3rd ed. US: Elsevier, 2008.

    [126] C Kharif, E Pelinovsky. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics B/Fluids, 22, 603-634(2003).

    [146] Z Wang, H Wu, M Fan. Random fiber laser: simpler and brighter. Opt Photon News, 25, 30(2014).

    [160] Z Lou, X Jin, H Zhang. High power, high-order random Raman fiber laser based on tapered fiber. IEEE Photonics Journal, 9, 1-6(2017).

    [166] H Wu, Z Wang, W Sun. 1.5 μm low threshold, high efficiency random fiber laser with hybrid erbium–raman gain. Journal of Lightwave Technology, 36, 844-849(2017).

    [174] [174] Wiersma D S, Cavalieri S. Temperaturecontrolled rom laser action in liquid crystal infiltrated systems[J]. Physical Review E, 2002, 66(5): 056612.

    [175] [175] Wang C, Liu J, Liu H. acteristic of polarization of rom laser[C]Proceedings of SPIE, International Society f Optics Photonics, 2005, 5644: 714722.

    [185] B C Yao, Y J Rao, Z N Wang. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Scientific Reports, 5, 18526(2015).

    [186] V Lisinetskii, A Ryabchun, A Bobrovsky. Photochromic composite for random lasing based on porous polypropylene infiltrated with azobenzene-containing liquid crystalline mixture. ACS Applied Materials & Interfaces, 7, 26595-26602(2015).

    Tools

    Get Citation

    Copy Citation Text

    Wenyu Du, Zhijia Hu, Zhigang Cao, Guosheng Zhang, Yan Wang, Weidong Luo, Benli Yu. Review of random laser research (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201052

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Advanced Laser Technology

    Received: Sep. 15, 2020

    Accepted: --

    Published Online: Jan. 14, 2021

    The Author Email: Hu Zhijia (zhijiahu@ahu.edu.cn)

    DOI:10.3788/IRLA20201052

    Topics