Optics and Precision Engineering, Volume. 31, Issue 24, 3540(2023)
Technology of low-loss high-reliability fusion splicing between photonic crystal fiber and polarization-maintaining fiber
[1] [1] 李晋, 闫浩, 孟杰. 光子晶体光纤气体吸收光谱探测技术研究进展[J]. 光学 精密工程, 2021, 29(10): 2316-2329. doi: 10.37188/ope.2021.0021LIJ, YANH, MENGJ. Research progress of gas absorption spectrum detection technology based on photonic crystal fiber[J]. Opt. Precision Eng., 2021, 29(10): 2316-2329.(in Chinese). doi: 10.37188/ope.2021.0021
[2] P MA, N SONG, J JIN et al. Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers. Optics & Laser Technology, 44, 1829-1833(2012).
[3] [3] 郑辛, 吴衍记, 于怀勇. 光子晶体光纤在光纤陀螺中的应用现状及其关键技术[J]. 导航定位与授时, 2017, 4(6): 1-8. doi: 10.19306/j.cnki.2095-8110.2017.06.001ZHENGX, WUY J, YUH Y. Key technology & application status of the photonic crystal fiber used in fiber optic gyroscope[J]. Navigation Positioning and Timing, 2017, 4(6): 1-8.(in Chinese). doi: 10.19306/j.cnki.2095-8110.2017.06.001
[4] [4] 徐小斌, 王晓阳, 高福宇, 等. 光子晶体光纤陀螺技术及其首次空间试验[J]. 中国惯性技术学报, 2021, 29(1): 1-7. doi: 10.51198/chinesest2021.01.165XUX B, WANGX Y, GAOF Y, et al. Photonic crystal fiber-optic gyroscope technology and its first space experiment[J]. Journal of Chinese Inertial Technology, 2021, 29(1): 1-7.(in Chinese). doi: 10.51198/chinesest2021.01.165
[5] [5] 奚小明, 陈子伦, 刘诗尧, 等. 光子晶体光纤与普通光纤的耦合熔接[J]. 激光技术, 2011, 35(2): 202-205. doi: 10.1088/0256-307x/20/2/309XIX M, CHENZ L, LIUS Y, et al. Coupling and fusion splicing of photonic crystal fibers with conventional fibers[J]. Laser Technology, 2011, 35(2): 202-205.(in Chinese). doi: 10.1088/0256-307x/20/2/309
[6] [6] 冯迪, 赵正琪, 房启蒙, 等. 光子晶体光纤端面研磨损伤的分析[J]. 光学 精密工程, 2017, 25(11): 2895-2903. doi: 10.3788/ope.20172511.2895FENGD, ZHAOZ Q, FANGQ M, et al. Analysis of end face damage in lapping for photonic crystal fiber[J]. Opt. Precision Eng., 2017, 25(11): 2895-2903.(in Chinese). doi: 10.3788/ope.20172511.2895
[7] L XIAO, M S DEMOKAN, W JIN et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect. Journal of lightwave technology, 25, 3563-3574(2007).
[8] J H CHONG, M RAO. Development of a system for laser splicing photonic crystal fiber. Optics Express, 11, 1365(2003).
[9] M L V TSE, H Y TAM, L B FU et al. Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength. IEEE Photonics Technology Letters, 21, 164-166(2008).
[10] Z L CHEN, X M XI, W J ZHANG et al. Low-loss fusion splicing photonic crystal fibers and double cladding fibers by controlled hole collapse and tapering. Journal of Lightwave Technology, 29, 3744-3747(2011).
[11] R W YU, C Y WANG, F BENABID et al. Robust mode matching between structurally dissimilar optical fiber waveguides. ACS Photonics, 8, 857-863(2021).
[12] J P MEUNIER, S I HOSAIN. An efficient model for splice loss evaluation in single-mode graded-index fibers. Journal of Lightwave Technology, 9, 1457-1463(1991).
[13] A ISHIKURA, Y KATO, T OOYANAGI et al. Loss factors analysis for single-mode fiber splicing without care axis alignment. Journal of Lightwave Technology, 7, 577-583(1989).
[14] A D YABLON, R T BISE. Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses. IEEE Photonics Technology Letters, 17, 118-120(2005).
[15] K SAITOH, M KOSHIBA. Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters, 15, 1384-1386(2003).
Get Citation
Copy Citation Text
Xiaoling WANG, Yafei ZHAO, Baolin LIU, Zijian ZHANG, Qiwei WANG. Technology of low-loss high-reliability fusion splicing between photonic crystal fiber and polarization-maintaining fiber[J]. Optics and Precision Engineering, 2023, 31(24): 3540
Category:
Received: Jun. 14, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: WANG Xiaoling (wangxl824@126. com)