Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1425(2023)

Evolution of Mesoscale Clusters in Study of Defects in Lithium Niobate Crystals

SHI Guoqiang1、*, CHEN Kunfeng2, TANG Gongbin2, HU Hui3, and XUE Dongfeng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(44)

    [7] [7] BURROWS L, Now entering, Lithium Niobate Valley. 2017; Available from: https://www.seas.harvard.edu/news/2017/12/now-entering-lithium- niobate-valley.

    [8] [8] YAN Zhiwei, WANG Qiang, XIAO Meng, et al. Probing rotated weyl physics on nonlinear lithium niobate-on-insulator chips[J]. Phys Rev Lett, 2021, 127(1): 013901.

    [9] [9] CHIH-LIN I, HAN Sen, and BIAN Shuangfeng. Energy-efficient 5G for a greener future[J]. Nature Electron, 2020, 3(4): 182-184.

    [10] [10] ZHANG Bin, LI Lingqi, WANG Lei, et al. Second harmonic generation in femtosecond laser written lithium niobate waveguides based on birefringent phase matching[J]. Opt Mater, 2020, 107: 110075.

    [11] [11] POHL D, M REIG ESCALé, M MADI, et al. An integrated broadband spectrometer on thin-film lithium niobate[J]. Nature Photon, 2019, 14(1): 24-29.

    [12] [12] WANG Cheng, ZHANG Mian, CHEN Xi, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104.

    [13] [13] WANG Ceng, ZHANG Mian, YU Mengjie, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nat Commun, 2019, 10(1): 978.

    [14] [14] XU Mengyue, HE Mingbo, ZHANG Hongguang, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nat Commun, 2020, 11(1): 3911.

    [15] [15] ZHANG Mian, BUSCAINO B, WANG Cheng, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377.

    [18] [18] SHI Guoqiang, XUE Dongfeng. A multiscale view in functional materials[J]. Pro Nat Sci-Mater, 2023. DOI: 10.1016/j.pnsc.2022.09.017.

    [19] [19] SHI Guoqiang, XUE Dongfeng. Perspective on multiple degrees of freedom in crystal materials[J]. Sci China Technol Sc, 2022, 65(11): 2787-2789.

    [20] [20] KONG Yongfa, BO Fang, WANG Weiwei, et al. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices[J]. Adv Mater, 2020, 32(3): e1806452.

    [21] [21] SCHMIDT F, A L KOZUB, U GERSTMANN, et al. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response[J]. Crystals, 2021, 11(5): 542.

    [22] [22] BHATT R, I BHAUMIK, S GANESAMOORTHY, et al. Control of intrinsic defects in lithium niobate single crystal for optoelectronic applications[J]. Crystals, 2017, 7(2): 23.

    [23] [23] PETERSON G, and CARNEVALE A. 93Nb NMR Linewidths in nonstoichiometric lithium niobate[J]. J Chem Phys, 1972, 56, 4848.

    [24] [24] KSTERS M, B STURMAN, P WERHEIT, et al. Optical cleaning of congruent lithium niobate crystals[J]. Nature Photon, 2009, 3(9): 510-513.

    [25] [25] GOPALAN V, T E MITCHELL, Y FURUKAWA, et al. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals[J]. Appl Phys Lett, 1998, 72(16): 1981-1983.

    [26] [26] CHEN Kunfeng, LI Yanlu, PENG Chao, et al. Microstructure and defect characteristics of lithium niobate with different Li concentrations[J]. Inorg Chem Front, 2021, 8(17): 4006-4013.

    [27] [27] HE Xiangke, XUE Dongfeng, KITAMURA K. Defects and domain engineering of lithium niobate crystals[J]. Mater Sci Eng: B, 2005, 120(1-3): 27-31.

    [29] [29] XUE Dongfeng, BETZLER K.Influence of optical-damage-resistant dopants on the nonlinear optical properties of lithium niobate[J]. Appl Phys B, 2014, 72(6): 641-645.

    [30] [30] XUE Dongfeng, BETZLER K, HESSE H. Chemical bond analysis of the second order nonlinear optical behavior of Zn-doped lithium niobate[J]. Opt Commun, 2000, 182(1-3): 167-173.

    [31] [31] XUE Dongfeng, BETZLER K, HESSE H. Induced Li-site vacancies and non-linear optical behavior of doped lithium niobate crystals[J]. Opt Mater, 2001, 16(3): 381-387.

    [32] [32] XUE Dongfeng HE Xiangke. Dopant occupancy and structural stability of doped lithium niobate crystals[J]. Phys Rev B, 2006, 73(6): 064113.

    [33] [33] XUE Dongfeng, IYI N, KITAMURA K. Influence of temperature on the structure and charge distribution of lithium niobate single crystals[J]. Jpn J Appl Phys, 2002, 41(11B): 7029-7032.

    [34] [34] XUE Dongfeng, KITAMURA K. Dielectric characterization of the defect concentration in lithium niobate single crystals[J]. Solid State Commun, 2002, 122(10): 537-541.

    [35] [35] XUE Dongfeng, KITAMURA K. An estimation of nonlinear optical properties of lithium niobate family ferroelectrics by the chemical bond model[J]. Jpn J Appl Phys, 2003, 42(Part 1, No. 9B): 6230-6233.

    [36] [36] XUE Dongfeng, KITAMURA K. Compositional dependence of cationic displacements in lithium niobate and lithium tantalate crystals[J]. J Phys Chem Solids, 2005, 66(2-4): 585-588.

    [37] [37] ZHANG Xu, XUE Dongfeng. Bond energy prediction of Curie temperature of lithium niobate crystals[J]. J Phys Chem B, 2007, 111(10): 2587-2590.

    [38] [38] FONTANA M D, BOURSON P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices[J]. Appl Phys Rev, 2015, 2(4): 040602.

    [39] [39] XU Hankun, LIN Kun, LI Wenjie, et al. Local structure manipulates nonlinear optical properties in non-stoichiometric lithium niobate[J]. J Phys Chem C, 2022, 126(34): 14735-14741.

    [40] [40] ROSHCHUPKIN D V, ROSHCHUPKINA H D, IRZHAK D V, et al. X-ray topography analysis of acoustic wave fields in the SAW-resonator structures[J]. T-UFFC, 2005, 52(11): 2081-2087.

    [41] [41] CAPELLE B, DETAINT J, EPELBOIN Y, et al. Crystalline quality of the trigonal piezoelectric materials and effects of the extended defects[J]. T-UFFC, 2012, 59(5): 1013-1022.

    [42] [42] CASTILLA H de, BLANGER P, ZEDNIK RICARDO J. High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method[J]. J Appl Phys, 2017, 122: 244103.

    [43] [43] FRANKE I, TALIK E, ROLEDER K, et al. Temperature stability of elastic and piezoelectric properties in LiNbO3 single crystal[J]. J Phys D: Appl Phys, 2005, 38: 4308-4312

    [44] [44] NATAF G F, AKTAS O, GRANZOW T, et al. Influence of defects and domain walls on dielectric and mechanical resonances in LiNbO3[J]. J Phys: Condens Matter, 2016, 28: 015901.

    [45] [45] GONNISSEN J, BATUK D, NATAF G F, et al. Direct observation of ferroelectric domain walls in LiNbO3: Wall-meanders, kinks, and local electric charges[J]. Adv Funct Mater, 2016, 26: 7599-7604.

    [47] [47] Du Wanying, Zhang Zibo, Xu Jiaqi, et al. Electro-optic property of Ti4+-doped LiNbO3 single crystal[J]. Opt Mater Exp, 2016, 6(8): 2593-2599.

    [49] [49] FURUKAWA Y, KITAMURA K, TAKEKAWA S, et al. Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations[J]. Appl Phys Lett 2000, 77(16): 2494-2496.

    [51] [51] HE Yali, XUE Dongfeng. Bond-energy study of photorefractive properties of doped lithium niobate crystals[J]. J Phys Chem C 2007, 111(35): 13238-13243.

    [52] [52] SCHWESYG J R., MARKOSYAN A, FALK M, et al. Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range[C]//Advances in Optical Materials. Optical Society of America, Istanbul, Turkey, 2011: AIThE3.

    [53] [53] SCHWESYG J R, KAJIYAMA M C C, FALK M, et al. Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range[J]. Appl Phys B. 2010(100): 109-115.

    [54] [54] FURUKAWA Y, KITAMURA K, ALEXANDROVSKI A, et al. Green-induced infrared absorption in MgO doped LiNbO3[J]. Appl Phys Lett, 2001, 78(14): 1970-1972.

    Tools

    Get Citation

    Copy Citation Text

    SHI Guoqiang, CHEN Kunfeng, TANG Gongbin, HU Hui, XUE Dongfeng. Evolution of Mesoscale Clusters in Study of Defects in Lithium Niobate Crystals[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1425

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 17, 2022

    Accepted: --

    Published Online: Aug. 13, 2023

    The Author Email: Guoqiang SHI (gq.shi@siat.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics