Ultrafast Science, Volume. 2, Issue 1, 9754919(2022)

Factor 30 Pulse Compression by Hybrid Multipass Multiplate Spectral Broadening

Marcus Seidel1、*, Prannay Balla1,2,3, Chen Li1, Gunnar Arisholm4, Lutz Winkelmann1, Ingmar Hartl1, and Christoph M. Heyl1,2,3
Author Affiliations
  • 1Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
  • 2Helmholtz Institute Jena, Fröbelstieg 3, 07743 JenaGermany
  • 3GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
  • 4FFI (Norwegian Defence Research Establishment), P.O. Box 25, NO-2027 Kjeller, Norway
  • show less
    References(55)

    [1] [1] G. Mourou, “Nobel Lecture: Extreme light physics and application,” Reviews of Modern Physics, vol. 91, no. 3, article 030501, 2019

    [3] [3] F. Albert, M. E. Couprie, A. Debus, M. C. Downer, J. Faure, A. Flacco, L. A. Gizzi, T. Grismayer, A. Huebl, C. Joshi, M. Labat, W. P. Leemans, A. R. Maier, S. P. D. Mangles, P. Mason, F. Mathieu, P. Muggli, M. Nishiuchi, J. Osterho, P. P. Rajeev, U. Schramm, J. Schreiber, A. G. R. Thomas, J.-L. Vay, M. Vranic, and K. Zeil, “2020 roadmap on plasma accelerators,” New Journal of Physics, vol. 23, no. 3, article 031101, 2021

    [4] [4] I. Orfanos, I. Makos, I. Liontos, E. Skantzakis, B. Forg, D. Charalambidis, and P. Tzallas, “Attosecond pulse metrology,” APL Photonics, vol. 4, no. 8, article 080901, 2019

    [6] [6] T. Nagy, P. Simon, and L. Veisz, “High-energy few-cycle pulses: Post-compression techniques,” Advances in Physics: X, vol. 6, no. 1, article 1845795, 2021

    [7] [7] J. Schulte, T. Sartorius, J. Weitenberg, A. Vernaleken, and P. Russbueldt, “Nonlinear pulse compression in a multi-pass cell,” Optics Letters, vol. 41, no. 19, pp. 4511–4514, 2016

    [8] [8] M. Hanna, F. Guichard, N. Daher, Q. Bournet, X. Delen, and P. Georges, “Nonlinear Optics in Multipass Cells,” Laser & Photonics Reviews, vol. 15, no. 12, article 2100220, 2021

    [11] [11] C. Rolland, and P. B. Corkum, “Compression of high-power optical pulses,” Journal of the Optical Society of America B, vol. 5, no. 3, p. 641, 1988

    [15] [15] M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, and T. Nubbemeyer, “Multipass spectral broadening of 18 mJ pulses compressible from 13 ps to 41 fs,” Optics Letters, vol. 43, no. 23, pp. 5877–5880, 2018

    [16] [16] P. Balla, A. BinWahid, I. Sytcevich, C. Guo, A.-L. Viotti, L. Silletti, A. Cartella, S. Alisauskas, H. Tavakol, U. Grosse-Wortmann, A. Schonberg, M. Seidel, A. Trabattoni, B. Manschwetus, T. Lang, F. Calegari, A. Couairon, A. L'Huillier, C. L. Arnold, I. Hartl, and C. M. Heyl, “Postcompression of picosecond pulses into the few-cycle regime,” Optics Letters, vol. 45, no. 9, pp. 2572–2575, 2020

    [17] [17] M. Kaumanns, D. Kormin, T. Nubbemeyer, V. Pervak, and S. Karsch, “Spectral broadening of 112 mJ, 13 ps pulses at 5 kHz in a LG 10 multipass cell with compressibility to 37 fs,” Optics Letters, vol. 46, no. 5, pp. 929–932, 2021

    [18] [18] S. Gröbmeyer, K. Fritsch, B. Schneider, M. Poetzlberger, V. Pervak, J. Brons, and O. Pronin, “Self-compression at 1 um wavelength in all-bulk multi-pass geometry,” Applied Physics B, vol. 126, no. 10, p. 159, 2020

    [19] [19] J. Song, Z. Wang, R. Lv, X. Wang, H. Teng, J. Zhu, and Z. Wei, “Generation of 172 fs pulse from a Nd: YVO4 picosecond laser by using multi-pass-cell technique,” Applied Physics B, vol. 127, no. 4, p. 50, 2021

    [20] [20] J. Song, Z. Wang, X. Wang, R. Liu, H. Teng, J. Zhu, and Z. Wei, “Generation of 601 fs pulse from an 8 kHz Nd:YVO4 picosecond laser by multi-pass-cell spectral broadening,” Chinese Optics Letters, vol. 19, no. 9, article 093201, 2021

    [21] [21] K. Fritsch, M. Poetzlberger, V. Pervak, J. Brons, and O. Pronin, “All-solid-state multipass spectral broadening to sub-20 fs,” Optics Letters, vol. 43, no. 19, pp. 4643–4646, 2018

    [22] [22] E. Vicentini, Y. Wang, D. Gatti, A. Gambetta, P. Laporta, G. Galzerano, K. Curtis, K. McEwan, C. R. Howle, and N. Coluccelli, “Nonlinear pulse compression to 22 fs at 156 µJ by an all-solid-state multipass approach,” Optics Express, vol. 28, no. 4, pp. 4541–4549, 2020

    [23] [23] G. Barbiero, H. Wang, J. Brons, B.-H. Chen, V. Pervak, and H. Fattahi, “Broadband terahertz solid-state emitter driven by Yb:YAG thin-disk oscillator,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 53, no. 12, article 125601, 2020

    [24] [24] C.-L. Tsai, F. Meyer, A. Omar, Y. Wang, A.-Y. Liang, C.-H. Lu, M. Homann, S.-D. Yang, and C. J. Saraceno, “Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 W average power,” Optics Letters, vol. 44, no. 17, pp. 4115–4118, 2019

    [25] [25] G. Barbiero, H. Wang, M. Gral, S. Grobmeyer, D. Kimbaras, M. Neuhaus, V. Pervak, T. Nubbemeyer, H. Fattahi, and M. F. Kling, “Efficient nonlinear compression of a thin-disk oscillator to 8.5 fs at 55 W average power,” Optics Letters, vol. 46, no. 21, pp. 5304–5307, 2021

    [26] [26] C. Li, L. Winkelmann, and I. Hartl, “Flexible Pulse-Shape Picosecond Front-End for XFEL Photocathode Lasers,” in Conference on Lasers and Electro-Optics, San Jose, California: OSA, 2019

    [27] [27] M. Seidel, F. Pressacco, O. Akcaalan, T. Binhammer, J. Darvill, N. Ekanayake, M. Frede, U. Grosse-Wortmann, M. Heber, C. M. Heyl, D. Kutnyakhov, C. Li, C. Mohr, J. Muller, O. Puncken, H. Redlin, N. Schirmel, S. Schulz, A. Swiderski, H. Tavakol, H. Tunnermann, C. Vidoli, L. Wenthaus, N. Wind, L. Winkelmann, B. Manschwetus, and I. Hartl, “Ultrafast MHz- rate burst-mode pump-probe laser for the FLASH FEL facility based on nonlinear compression of ps-level pulses from an Yb-amplifier chain,” Laser & Photonics Reviews, vol. 16, article 2100268, 2022

    [28] [28] L. Lavenu, M. Natile, F. Guichard, X. Delen, M. Hanna, Y. Zaouter, and P. Georges, “Highpower two-cycle ultrafast source based on hybrid nonlinear compression,” Optics Express, vol. 27, no. 3, pp. 1958–1967, 2019

    [29] [29] G. Arisholm, and H. Fonnum Simulation System For Optical Science (SISYFOS) tutorial, version 2, Norwegian Defence Research Establishment (FFI), 2021

    [30] [30] D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Applied Optics, vol. 37, no. 3, pp. 546–550, 1998

    [31] [31] A. Vernaleken, P. Rubuldt, T. Sartorius, J. Schulte, and J. Weitenberg, “Method and arrangement for the spectral broadening of laser pulses for non-linear pulse compression,”, US Patent 9,847,615, 2017.

    [32] [32] Y.-C. Cheng, C.-H. Lu, Y.-Y. Lin, and A. H. Kung, “Supercontinuum generation in a multiplate medium,” Optics Express, vol. 24, no. 7, pp. 7224–7231, 2016

    [33] [33] D. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Applied Optics, vol. 3, no. 4, pp. 523–526, 1964

    [34] [34] M. Hanna, L. Daniault, F. Guichard, N. Daher, X. Delen, R. Lopez-Martens, and P. Georges, “Nonlinear beam matching to gas-filled multipass cells,” OSA Continuum, vol. 4, no. 2, pp. 732–738, 2021

    [35] [35] G. Agrawal, “Self-Phase Modulation,” Nonlinear Fiber Optics, Elsevier, 2013

    [36] [36] P. Russbueldt, J. Weitenberg, J. Schulte, R. Meyer, C. Meinhardt, H. D. Homann, and R. Poprawe, “Scalable 30 fs laser source with 530 W average power,” Optics Letters, vol. 44, no. 21, pp. 5222–5225, 2019

    [37] [37] M. Hanna, N. Daher, F. Guichard, X. Delen, and P. Georges, “Hybrid pulse propagation model and quasi-phase-matched four-wave mixing in multipass cells,” Journal of the Optical Society of America B, vol. 37, no. 10, pp. 2982–2988, 2020

    [38] [38] A.-L. Viotti, S. Alisauskas, H. Tunnermann, E. Escoto, M. Seidel, K. Dudde, B. Manschwetus, I. Hartl, and C. M. Heyl, “Temporal pulse quality of a Yb:YAG burst-mode laser post-compressed in a multi-pass cell,” Optics Letters, vol. 46, no. 18, pp. 4686–4689, 2021

    [39] [39] G. Agrawal, “Polarization effects, cross-phase modulation,” Nonlinear Fiber Optics, Elsevier, 2013

    [40] [40] C.-L. Tsai, Y.-H. Tseng, A.-Y. Liang, M.-W. Lin, S.-D. Yang, and M.-C. Chen, “Nonlinear Compression of Intense Optical Pulses at 1.55 µm by Multiple Plate Continuum Generation,” Journal of Lightwave Technology, vol. 37, no. 19, pp. 5100–5107, 2019

    [41] [41] J. Weitenberg, A. Vernaleken, J. Schulte, A. Ozawa, T. Sartorius, V. Pervak, H.-D. Homann, T. Udem, P. Russbuldt, and T. W. Hansch, “Multi-pass-cell-based nonlinear pulse compression to 115 fs at 75 µJ pulse energy and 300 W average power,” Optics Express, vol. 25, no. 17, pp. 20502–20510, 2017

    [42] [42] M. Hanna, X. Delen, L. Lavenu, F. Guichard, Y. Zaouter, F. Druon, and P. Georges, “Nonlinear temporal compression in multipass cells: Theory,” Journal of the Optical Society of America B, vol. 34, no. 7, p. 1340, 2017

    [43] [43] M. Müller, J. Buldt, H. Stark, C. Grebing, and J. Limpert, “Multipass cell for high-power few-cycle compression,” Optics Letters, vol. 46, no. 11, p. 2678, 2021

    [44] [44] C. M. Heyl, M. Seidel, E. Escoto, A. Schonberg, G. Arisholm, T. Lang, and I. Hartl, “High-energy bow tie multi-pass cells for nonlinear spectral broadening applications,” Journal of Physics: Photonics, vol. 4, no. 1, 2022

    [45] [45] D. S. Hobbs, B. D. MacLeod, and E. S. III, “Continued advancement of laser damage resistant optically functional microstructures,” Laser-induced damage in optical materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, Eds., SPIE, vol. 8530, 2012

    [46] [46] E. A. Khazanov, S. Y. Mironov, and G. A. Mourou, “Nonlinear compression of high-power laser pulses: Compression after compressor approach,” Physics-Uspekhi, vol. 62, no. 11, pp. 1096–1124, 2019

    [47] [47] R. W. Boyd, “Chapter 4 - The Intensity-Dependent Refractive Index,” Nonlinear Optics (Third Edition), R. W. Boyd, Ed., Academic Press, Burlington, pp. 207–252, 2008

    [48] [48] J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Optics Letters, vol. 39, no. 22, p. 6442, 2014

    [49] [49] J. Fischer, J. Drs, N. Modsching, F. Labaye, V. J. Wittwer, and T. Südmeyer, “Efficient 100- MW, 100-W, 50-fs-class Yb:YAG thin-disk laser oscillator,” Optics Express, vol. 29, no. 25, article 42075, 2021

    [50] [50] N. Lilienfein, H. Carstens, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tunnermann, A. Apolonski, F. Krausz, and I. Pupeza, “Balancing of thermal lenses in enhancement cavities with transmissive elements,” Optics Letters, vol. 40, no. 5, p. 843, 2015

    [51] [51] A. Sennaroglu, and J. Fujimoto, “Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,” Optics Express, vol. 11, no. 9, p. 1106, 2003

    [52] [52] D. R. Herriott, and H. J. Schulte, “Folded Optical Delay Lines,” Applied Optics, vol. 4, no. 8, p. 883, 1965

    [53] [53] A. E. Siegman Lasers, Revised, University Science Books, Sausalito, California, 1986

    [54] [54] L. Yan, Y.-Q. Liu, and C. Lee, “Pulse temporal and spatial chirping by a bulk Kerr medium in a regenerative amplifier,” IEEE Journal of Quantum Electronics, vol. 30, no. 9, pp. 2194–2202, 1994

    [55] [55] , “Heraeus Transmission Calculator for Optical Applications,”, 2022,

    Tools

    Get Citation

    Copy Citation Text

    Marcus Seidel, Prannay Balla, Chen Li, Gunnar Arisholm, Lutz Winkelmann, Ingmar Hartl, Christoph M. Heyl. Factor 30 Pulse Compression by Hybrid Multipass Multiplate Spectral Broadening[J]. Ultrafast Science, 2022, 2(1): 9754919

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 23, 2021

    Accepted: Feb. 15, 2022

    Published Online: Sep. 28, 2023

    The Author Email: Seidel Marcus (marcus.seidel@desy.de)

    DOI:10.34133/2022/9754919

    Topics