Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1403(2024)
Low-Temperature Sintering and Energy Storage Properties of Lead Lanthanum Zirconate Stannate-Titanate Antiferroelectric Ceramics
[1] [1] DAN Y, XU H J, ZHANG Y Y, et al. High-energy density of Pb0.97La0.02(Zr0.50Sn0.45Ti0.05)O3 antiferroelectric ceramics prepared by sol-gel method with low-cost dibutyltin oxide[J]. J Am Ceram Soc, 2019, 102(4): 1776-1783.
[2] [2] BIAN F, YAN S G, XU C H, et al. Enhanced breakdown strength and energy density of antiferroelectric Pb, La(Zr, Sn, Ti)O3 ceramic by forming core-shell structure[J]. J Eur Ceram Soc, 2018, 38(9): 3170-3176.
[3] [3] LIU P, LI M Y, ZHANG Q F, et al. High thermal stability in PLZST anti-ferroelectric energy storage ceramics with the coexistence of tetragonal and orthorhombic phase[J]. J Eur Ceram Soc, 2018, 38(16): 5396-5401.
[4] [4] DAN Y, ZOU K L, CHEN G, et al. Superior energy-storage properties in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics with appropriate La content[J]. Ceram Int, 2019, 45(9): 11375-11381.
[5] [5] XU R, XU Z, FENG Y J, et al. Energy storage and release properties of Sr-doped (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics[J]. Ceram Int, 2016, 42(11): 12875-12879.
[6] [6] HAERTLING G H. PLZT electrooptic materials and applications—A review[J]. Ferroelectrics, 1987, 75(1): 25-55.
[7] [7] HAO X H, ZHAI J W, KONG L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1-57.
[8] [8] SAKABE Y. Multilayer ceramic capacitors[J]. Curr Opin Solid State Mater Sci, 1997, 2(5): 584-587.
[9] [9] CABALLERO A C, NIETO E, DURAN P, et al. Ceramic-electrode interaction in PZT and PNN-PZT multilayer piezoelectric ceramics with AG/PD 70/30 inner electrode[J]. J Mater Sci, 1997, 32(12): 3257-3262.
[10] [10] CHEN L M, HAO X H, ZHANG Q W, et al. Energy-storage performance of PbO-B2O3-SiO2 added (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric ceramics prepared by microwave sintering method[J]. J Mater Sci Mater Electron, 2016, 27(5): 4534-4540.
[11] [11] SUN H C, XU R, ZHU Q S, et al. Low temperature sintering of PLZST-based antiferroelectric ceramics with Al2O3 addition for energy storage applications[J]. J Eur Ceram Soc, 2022, 42(4): 1380-1387.
[12] [12] LI S, FU J, ZUO R Z. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors[J]. Ceram Int, 2021, 47(14): 20117-20125.
[13] [13] CHEN S C, YANG T Q, WANG J F, et al. Effects of glass additions on the dielectric properties and energy storage performance of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics[J]. J Mater Sci Mater Electron, 2013, 24(12): 4764-4768.
[14] [14] WANG X C, SHEN J, YANG T Q, et al. High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02) (Zr0.5Sn0.5-xTix)O3 ceramic[J]. J Alloys Compd, 2016, 655: 309-313.
[15] [15] XU R, ZHU Q S, XU Z, et al. PLZST antiferroelectric ceramics with promising energy storage and discharge performance for high power applications[J]. J Am Ceram Soc, 2020, 103(3): 1831-1838.
[16] [16] LIU X H, LI Y, HAO X H. Ultra-high energy-storage density and fast discharge speed of (Pb0.98?xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method[J]. J Mater Chem A, 2019, 7(19): 11858-11866.
[17] [17] KAUR K, SINGH K J, ANAND V. Structural properties of Bi2O3-B2O3-SiO2-Na2O glasses for gamma ray shielding applications[J]. Radiat Phys Chem, 2016, 120: 63-72.
[18] [18] EL-EGILI K. Infrared studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 glasses[J]. Phys B Condens Matter, 2003, 325: 340-348.
[19] [19] SADDEEK Y B, SHAABAN E R, MOUSTAFA E S, et al. Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3-Li2O-B2O3 glasses[J]. Phys B Condens Matter, 2008, 403(13-16): 2399-2407.
[20] [20] OUDICH F, DAVID N, VILASI M. Phase equilibria investigations and thermodynamic modeling of the PbO-Al2O3 system[J]. Int J Mater Res, 2015, 106(8): 832-840.
[21] [21] KOOPMAN M, GOUADEC G, CARLISLE K, et al. Compression testing of hollow microspheres (microballoons) to obtain mechanical properties[J]. Scr Mater, 2004, 50(5): 593-596.
[22] [22] CHOWDARI B. The role of Bi2O3 as a network modifier and a network former in xBi2O3·(1-x)LiBO2 glass system[J]. Solid State Ion, 1996, 90(1-4): 151-160.
[23] [23] CHENG Y, XIAO H N, GUO W M. Influence of rare-earth oxides on structure and crystallization properties of Bi2O3-B2O3 glass[J]. Mater Sci Eng A, 2008, 480(1-2): 56-61.
[24] [24] XIE J Y, YAO M W, GAO W B, et al. Ultrahigh breakdown strength and energy density in PLZST@PBSAZM antiferroelectric ceramics based on core-shell structure[J]. J Eur Ceram Soc, 2019, 39(4): 1050-1056.
[25] [25] QI X Y, CHEN H W, DENG B W, et al. Energy-storage properties of Sr-doped PLZST bulk ceramics and thick films[J]. J Mater Sci Mater Electron, 2019, 30(19): 17916-17922.
[26] [26] WANG X C, SHEN J, YANG T Q, et al. Phase transition and energy storage performance in Ba-doped PLZST antiferroelectric ceramics[J]. J Mater Sci Mater Electron, 2015, 26(11): 9200-9204.
[27] [27] YANG H B, YAN F, LIN Y, et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition[J]. J Eur Ceram Soc, 2018, 38(4): 1367-1373.
[28] [28] XU C H, LIU Z, CHEN X F, et al. High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics[J]. J Appl Phys, 2016, 120(7): 074107.
[29] [29] QIAO P X, ZHANG Y F, CHEN X F, et al. Enhanced energy storage properties and stability in (Pb0.895La0.07)(ZrxTi1-x)O3 antiferroelectric ceramics[J]. Ceram Int, 2019, 45(13): 15898-15905.
[30] [30] WANG L, LI Q, XUE L H, et al. Effect of Ti4+: Sn4+ ratio on the phase transition and electric properties of PLZST antiferroelectric ceramics[J]. J Mater Sci, 2007, 42(17): 7397-7401.
[31] [31] ZHUO F P, LI Q, ZHOU Y M, et al. Large field-induced strain, giant strain memory effect, and high thermal stability energy storage in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric single crystal[J]. Acta Mater, 2018, 148: 28-37.
[32] [32] LI Y Y, CAO W W, LI Q, et al. Electric field induced metastable ferroelectric phase and its behavior in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric single crystal near morphotropic phase boundary[J]. Appl Phys Lett, 2014, 104(5): 052912.
[33] [33] TICKOO R, TANDON R P, MEHRA N C, et al. Dielectric and ferroelectric properties of lanthanum modified lead titanate ceramics[J]. Mater Sci Eng B, 2002, 94(1): 1-7.
[34] [34] SUN H C, XU R, WANG X Z, et al. Energy storage properties of PLZST-based antiferroelectric ceramics with glass additives for low-temperature sintering[J]. Ceram Int, 2022, 49(2): 2591-2599.
[35] [35] WANG X Z, SUN H C, WANG M J, et al. Low-temperature sintering of PLSZT-based antiferroelectric ceramics in reducing atmosphere for energy storage[J]. J Eur Ceram Soc, 2024, 44(2): 898-906.
[36] [36] HUANG K W, GE G L, BAI H R, et al. Ameliorative energy-storage properties stemmed from the refined grains in PBLZS antiferroelectric ceramics via introducing liquid phase sintering[J]. J Eur Ceram Soc, 2021, 41(4): 2450-2457.
[37] [37] LIN C L, WANG S B, LI W Q, et al. Low sintering temperature and enhanced energy-storage properties in (Pb0.85La0.05Sr0.1)(Zr0.9Ti0.1)0.9875O3 glass-modified antiferroelectric ceramics[J]. J Mater Sci Mater Electron, 2023, 34(6): 512.
[38] [38] ZHANG G, ZHU D, ZHANG X, et al. High‐energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot‐press sintering method[J]. J Am Ceram Soc, 2015, 98(4): 1175-1181.
[39] [39] GAO P, LIU Z H, ZHANG N, et al. New antiferroelectric perovskite system with ultrahigh energy-storage performance at low electric field[J]. Chem Mater, 2019, 31(3): 979-990.
[40] [40] ZHU Q S, ZHAO S Y, XU R, et al. Frequency dependence of antiferroelectricferroelectric phase transition of PLZST ceramic[J]. J Am Ceram Soc, 2022, 105(4): 2634-2645 .
Get Citation
Copy Citation Text
YU Yuliang, WANG Shibin, LI Weiqiu, HE Houzhu, ZHAO Xiaobo, YAO Yingbang, TAO Tao, LIANG Bo, LU Sheng Guo. Low-Temperature Sintering and Energy Storage Properties of Lead Lanthanum Zirconate Stannate-Titanate Antiferroelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1403
Category:
Received: Dec. 5, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Guo LU Sheng (sglu@gdut.edu.cn)