Journal of Synthetic Crystals, Volume. 49, Issue 11, 2178(2020)
Epitaxial Growth and Characterizations of Si1-xGex Alloys on Si Substrate
[1] [1] Krishnamurthy S, Chen A B, Sher A. Near band edge absorption spectra of narrowgap ⅢV semiconductor alloys[J]. Journal of Applied Physics, 1996, 80(7): 40454048.
[2] [2] Bakkers E P A M, Dam J A V, Franceschi S D, et al. Epitaxial growth of InP nanowires on germanium[J]. Nature Materials, 2004, 3(11): 769773.
[3] [3] Chen R, Lin H, Huo Y J, et al. Increased photoluminescence of strainreduced, highSn composition Ge1-xSnx alloys grown by molecular beam epitaxy[J]. Applied Physics Letters, 2011, 99(18): 181125.
[4] [4] Thompson S, Anand N, Armstrong M, et al. A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 um(2) SRAM cell[C]// International Electron Devices Meeting. IEEE, 2002: 6164.
[6] [6] Werner J, Oehme M, Schmid M, et al. Germaniumtin pin photodetectors integrated on silicon grown by molecular beam epitaxy[J]. Applied Physics Letters, 2011, 98(6): 061108.
[7] [7] Oehme M, Werner J, Gollhofer M, et al. Roomtemperature electroluminescence from GeSn lightemitting pin diodes on Si[J]. IEEE Photonics Technology Letters, 2011, 23(23): 17511753.
[8] [8] Henini M. Properties of strained and relaxed silicon germanium[J]. Microelectronics Journal, 1996, 27(1): 102.
[9] [9] Pearsall T P, Beam E A, Temkin H, et al. GeSi/Si infrared, zonefolded superlattice detectors[J]. Electronics Letters, 1988, 24(11): 685687.
[10] [10] Soeriyadi A H, Conrad B, Zhao X, et al. Increased spectrum utilization with GaAsP/SiGe solar cells grown on silicon substrates[J]. Mrs Advances, 2016, 1(43): 29012906.
[11] [11] Haku H, Sayama K, Maruyama E, et al. Highperformance aSiGe solar cells using a super chamber method[J]. Japanese Journal of Applied Physics, 1991, 30(Part 1, No. 11A): 27002704.
[12] [12] Lee S M, Cahill D G, Venkatasubramanian R. Thermal conductivity of SiGe superlattices[J]. Applied Physics Letters, 1997, 70(22): 29572959.
[13] [13] Chen P, Katcho N A, Feser J P, et al. Role of surfacesegregationdriven intermixing on the thermal transport through planar Si/Ge superlattices.[J]. Physical Review Letters, 2013, 111(11): 115901.
[14] [14] Yang L N, Minnich A J. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation[J]. Scientific Reports, 2017, 7(1): 44254.
[15] [15] Latour B, Shulumba N, Minnich A J. Ab initio study of moderesolved phonon transmission at Si/Ge interfaces using atomistic Green's functions[J]. Physical Review B, 2017, 96(10): 104310.
[16] [16] Minnich A J, Dresselhaus M S, Ren Z F, et al. Bulk nanostructured thermoelectric materials: current research and future prospects[J]. Energy & Environmental Science, 2009, 2(5): 466.
[17] [17] Hao Q, Zhu G, Joshi G, et al. Theoretical studies on the thermoelectric figure of merit of nanograined bulk silicon[J]. Applied Physics Letters, 2010, 97(6): 063109.
[18] [18] Dresselhaus M S, Chen G, Tang M Y, et al. New directions for nanoscale thermoelectric materials research[J]. Advanced Materials, 2010, 19(8): 10431053.
[19] [19] Vasilevskaya V N, Soldatenko N N, Tkhorik Y A. Crystalline structure of germanium films on silicon substrates: Ⅱ. Metallographical studies of Ge on Si heteroepitaxial film structure[J]. Thin Solid Films, 1971, 7(2): 127134.
[20] [20] Kasper E, Herzog H J, Kibbel H. A onedimensional SiGe superlattice grown by UHV epitaxy[J]. Applied Physics, 1975, 8(3): 199205.
[21] [21] Kasper E, Herzog H J. Elastic strain and misfit dislocation density in Si0.92Ge0.08 films on silicon substrates[J]. Thin Solid Films, 1977, 44(3): 357370.
[22] [22] Kasper E, Pabst W. Profiling of SiGe superlattices by He backscattering[J]. Thin Solid Films, 1976, 37(1): L5L7.
[23] [23] Vasilevskaya V N, Datsenko L I, Osadchaya N V, et al. Structural perfection of the GeSi and SiGe heteroepitaxial systems[J]. Thin Solid Films, 1974, 22(3): 221229.
[24] [24] Vasilevskaya V N, Datsenko L I, Konakova R V, et al. Imperfections in the transient layer of the SiSieGe heteroepitaxial system[J]. Thin Solid Films, 1976, 32(2): 371373.
[25] [25] Vasilevskaya V N, Konakova R V, Osadchaya N V, et al. Structure and electrical characteristics of SiGe heterojunctions. 1. Imperfections in the SiGe heteroepitaxial system obtained by deposition of germanium from a molecular beam[J]. Thin Solid Films, 1978, 55(2): 229234.
[26] [26] Bean J C, Sheng T T, Feldman L C, et al. Pseudomorphic growth of GexSi1-x on silicon by molecular beam epitaxy[J]. Applied Physics Letters, 1984, 44(1): 102104.
[27] [27] Samavedam S B, Currie M T, Langdo T A, et al. Highquality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers[J]. Applied Physics Letters, 1998, 73(15): 21252127.
[28] [28] Currie M T, Samavedam S B, Langdo T A, et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemicalmechanical polishing[J]. Applied Physics Letters, 1998, 72(14): 17181720.
[29] [29] Peng C S, Chen H, Zhao Z Y, et al. Strain relaxation of GeSi alloy with low dislocation density grown on lowtemperature Si buffers[J]. Journal of Crystal Growth, 1999, 201(3): 530533.
[30] [30] Bolkhovityanov Y B, Deryabin A S, Gutakovskii A K, et al. Heterostructures GexSi1-x/Si(001) (x=0.180.62) grown by molecular beam epitaxy at a low (350 ℃) temperature: specific features of plastic relaxation[J]. Thin Solid Films, 2004, 466(1/2): 6974.
[31] [31] Fujinaga K. Lowtemperature heteroepitaxy of Ge on Si by GeH4 gas lowpressure chemical vapor deposition[J]. Journal of Vacuum Science & Technology B, 1991, 9(3): 1511.
[32] [32] Rauscher H, Braun J, Behm R J. SixGe1-x ultrahighvacuum chemical vapor deposition on Si(111)(7×7) from GeH4/Si2H6 mixtures[J]. Applied Physics A, 2003, 76(5): 711719.
[33] [33] Aharoni H. Chemical vapor deposition of Ge on Si from GeH4He gas mixtures[J]. Journal of Crystal Growth, 1981, 54(3): 600601.
[35] [35] Schffler F. Highmobility Si and Ge structures[J]. Semiconductor Science and Technology, 1997, 12(12): 15151549.
[36] [36] Szczech J R, Higgins J M, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials[J]. Journal of Materials Chemistry, 2011, 21(12): 40374055.
[37] [37] Li D Y, Wu Y Y, Fan R, et al. Thermal conductivity of Si/SiGe superlattice nanowires[J]. Applied Physics Letters, 2003, 83(15): 31863188.
[38] [38] Wang S, Zhou T, Li D, et al. Evolution and engineering of precisely controlled Ge nanostructures on scalable array of ordered Si nanopillars[J]. Sci Rep, 2016, 6: 28872.
[39] [39] Koh Y K, Cahill D G. Frequency dependence of the thermal conductivity of semiconductor alloys[J]. Physical Review B, 2007, 76(7): 075207.
[40] [40] Yonenaga I, Akashi T, Goto T. Thermal and electrical properties of Czochralski grown GeSi single crystals[J]. Journal of Physics and Chemistry of Solids, 2001, 62(7): 13131317.
[41] [41] Bera C, Mingo N, Volz S. Marked effects of alloying on the thermal conductivity of nanoporous materials[J]. Physical Review Letters, 2010, 104(11): 115502.
[42] [42] Garg J, Bonini N, Kozinsky B, et al. Role of disorder and anharmonicity in the thermal conductivity of silicongermanium alloys: a firstprinciples study[J]. Physical Review Letters, 2011, 106(4): 045901.
[43] [43] Cheaito R, Duda J C, Beechem T E, et al. Experimental investigation of size effects on the thermal conductivity of silicongermanium alloy thin films[J]. Physical Review Letters, 2012, 109(19): 195901.
[44] [44] Wang Y S, Liu Z C, Ye J J, et al. Thermal transport in molecular beam epitaxy grown Si1-xGex alloy films with a full spectrum of composition(x=01)[J]. Journal of Applied Physics, 2019, 125(21): 215109.
[45] [45] Cahill D G. Analysis of heat flow in layered structures for timedomain thermoreflectance[J]. Review of Scientific Instruments, 2004, 75(12): 51195122.
[46] [46] Yan X J, Lv Y Y, Li L, et al. Investigation on the phasetransitioninduced hysteresis in the thermal transport along the caxis of MoTe2[J]. npj Quantum Materials, 2017, 2: 31.
[47] [47] Yan X J, Lv Y Y, Li L, et al. Composition dependent phase transition and its induced hysteretic effect in the thermal conductivity of WxMo1-xTe2[J]. Applied Physics Letters, 2017, 110(21): 211904.
[48] [48] Erofeev R S, Iordanis E K, Petrov A V. Thermal conductivity of doped SiGe solid solutions[J]. Soviet Physics Solid State, 1966, 7(10): 2470.
[49] [49] Abeles B, Beers D S, Cody G D, et al. Thermal conductivity of GeSi alloys at high temperatures[J]. Physical Review, 1962, 125(1): 44.
[50] [50] Dismukes J P, Ekstrom L, Steigmeier E F, et al. Thermal and electrical properties of heavily doped GeSi alloys up to 1300° K[J]. Journal of Applied Physics, 1964, 35(10): 28992907.
[51] [51] Chen J, Zhang G, Li B W. Impacts of atomistic coating on thermal conductivity of germanium nanowires[J]. Nano Letters, 2012, 12(6): 28262832.
[52] [52] Carruthers J A, Geballe T H, Rosenberg H M, et al. The thermal conductivity of Germanium and Silicon between 2degreesK and 300degreesK[J]. Proceedings of the Royal Society of London, 1957, 238(1215): 502514.
[53] [53] Glassbrenner C J, Slack G A. Thermal conductivity of silicon and germanium from 3 degrees K to the melting point[J]. Physical Review, 1964, 134(4A): 1058.
[54] [54] Wei L, Miao Y, Ding Y F, et al. Ultra high hole mobility in Ge films grown directly on Si (100) through interface modulation[J]. Journal of Crystal Growth, 2020, 548(15): 125838.
[56] [56] Eaglesham D J, Cerullo M. Dislocationfree StranskiKrastanow growth of Ge on Si(100)[J]. Physical Review Letters, 1990, 64(16): 19431946.
[57] [57] Xia S, Zhang W, Ye J, et al. Preservation of the pseudomorphic layer through a laminated relaxation process in SiGe grown on Si (001) by molecular beam epitaxy[J]. Materials Today Physics.
[58] [58] Averin D V, Likharev K K. Modern problems in condensed matter sciences[J]. Mesoscopic Phenomena in Solids, 1991.
[59] [59] Shklyaev A A, Shibata M, Ichikawa M. Highdensity ultrasmall epitaxial Ge islands on Si(111) surfaces with a SiO2 coverage[J]. Physical Review B, 2000, 62(3): 15401543.
Get Citation
Copy Citation Text
YUAN Ziyuan, PAN Rui, XIA Shunji, WEI Lian, YE Jiajia, LI Chen, CHEN Yanfeng, LU Hong. Epitaxial Growth and Characterizations of Si1-xGex Alloys on Si Substrate[J]. Journal of Synthetic Crystals, 2020, 49(11): 2178
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: Ziyuan YUAN (yzy3673759@163.com)
CSTR:32186.14.