Journal of the Chinese Ceramic Society, Volume. 52, Issue 2, 381(2024)

Mechanism of Alumina Clogging on Submerged Entry Nozzle

LI Hongxia1、*, GU Qiang1, LIU Guoqi1, YUAN Lei2, and ZHI Jianjun3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(40)

    [1] [1] WANG D Y, LI X B, WANG H H, et al. Dissolution rate and mechanism of solid MgO particles in synthetic ladle slags[J]. J Non Cryst Solids, 2012, 358(9): 1196-1201.

    [2] [2] KAZAKOV A. Influence of the electrical potential on converter smelting[J]. Rus Metall, 1997, 6(1): 25-26.

    [3] [3] ANEZIRIS C G, PFAFF E M, MAIER H R. Corrosion mechanisms of low porosity ZrO2 based materials during near net shape steel casting[J]. J Eur Ceram Soc, 2000, 20(2): 159-168.

    [4] [4] SUN M K, JUNG I H, LEE H G. Morphology and chemistry of oxide inclusions after Al and Ti complex deoxidation[J]. Met Mater Int, 2008, 14(6): 791-798.

    [5] [5] BASU S, CHOUDHARY S K, GIRASE N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel[J]. Isij Int, 2004, 44(10): 1653-1660.

    [6] [6] MIKI Y, KITAOKA H, SAKURAYA T, et al. Mechanism for separating inclusions from molten steel stirred with a rotating electro-magnetic field[J]. Isij Int, 1992, 32(1): 142-149.

    [7] [7] ZHANG L F, THOMAS B G. State of the art in the control of inclusions during steel ingot casting[J]. Metall Mater Trans B, 2006, 37(5): 733-761.

    [8] [8] MATSUI T, IKEMOTO T, SAWANO K, et al. Effects of carbon and silica in submerged entry nozzles on alumina buildup[J]. Taikabutsu Overseas, 1998, 18: 3-9.

    [9] [9] SASAI K, MIZUKAMI Y. Reaction mechanism between alumina graphite immersion nozzle and low carbon steel[J]. Isij Int, 1994, 34(10): 802-809.

    [10] [10] FUKUDA Y, UESHIMA Y, MIZOGUCHI S. Mechanism of alumina deposition on alumina graphite immersion nozzle in continuous caster[J]. Isij Int, 1992, 32(1): 164-168.

    [11] [11] BAI H, THOMAS B G. Effects of clogging, argon injection, and continuous casting conditions on flow and air aspiration in submerged entry nozzles[J]. Metall Mater Trans B, 2001, 32(4): 707-722.

    [12] [12] SUZUKI M, YAMAOKA Y, KUBO N, et al. Oxidation of molten steel by the air permeated through a refractory tube[J]. Isij Int, 2002, 42(3): 248-256.

    [13] [13] GONG Jian, WANG Qingxiang, ZHOU Hui. Continuous Cast, 2001, 26(2): 4-7.

    [14] [14] LI H X, JI B K, ZHAO J G. Reaction Mechanism of O'-sialon-ZrO2 Composite by Using Reaction Nitridation Method[J]. China Refractory, 1997, 6(2): 12-16.

    [15] [15] DAWSON S M. Blockage of Tundish nozzles during the continuous casting of aluminum-killed steel[D]. Canada: University of Toronto. 1990.

    [16] [16] TSUKAGUCHI Y, HAYASHI H, KURIMOTO H, et al. Development of swirling-flow submerged entry nozzles for slab casting[J]. ISIJ Int, 2010, 50(5): 721-729.

    [17] [17] OSAMU N, SHINSUKE I, MASANORI O. Water model simulation of “mogul-lined” submerged entry nozzle[J]. Taikabutsu Overseas, 2004, 24(3):194-197.

    [18] [18] CAO X, JIE Y, WANG N, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J]. Adv Energy Mater, 2016, 6(23): 1600665.

    [19] [19] LOWELL J, TRUSCOTT W S. Triboelectrification of identical insulators. II. Theory and further experiments[J]. J Phys D: Appl Phys, 1986, 19(7): 1281-1298.

    [20] [20] DAI Wenbin, YANG Xin, ZHOU Xiuli, et al. J Univ Sci Technol Liaoning, 2016, 39(1): 12-14.

    [21] [21] YANG Y, J?NSSON P G, ERSSON M, et al. Inclusion behavior under a swirl flow in a submerged entry nozzle and mold[J]. Steel Res Int, 2015, 86(4): 341-360.

    [22] [22] AYATA K, MORI H, TANIGUCHI K, et al. Low superheat teeming with electromagnetic stirring[J]. Isij Int, 1995, 35(6): 680-685.

    [23] [23] KUMAR D S, RAJENDRA T, SARKAR A, et al. Slab quality improvement by controlling mould fluid flow[J]. Ironmak Steelmak, 2007, 34(2): 185-191.

    [24] [24] NADIF M, LEHMANN J, BURTY M, et al. Control of steel reoxidation and CC nozzle clogging: an overview[J]. Rev Met Paris, 2007, 104(10): 493-500.

    [25] [25] DENG Z Y, ZHU M Y, ZHONG B J, et al. Attachment of liquid calcium aluminate inclusions on inner wall of submerged entry nozzle during continuous casting of calcium-treated steel[J]. Isij Int, 2014, 54(12): 2813-2820.

    [26] [26] TSUJINO R, TANAKA A, IMAMURA A, et al. Mechanism of deposition of inclusions and metal on ZrO2-CaO-C immersion nozzle in continuous casting[J]. Tetsu-to-Hagane, 1994, 80(10): 765-770.

    [27] [27] VERMEULEN Y, COLETTI B, BLANPAIN B, et al. Material evaluation to prevent nozzle clogging during continuous casting of Al killed steels[J]. Isij Int, 2002, 42(11): 1234-1240.

    [28] [28] SVENSSON J K S, MEMARPOUR A, EKEROT S, et al. Studies of new coating materials to prevent clogging of submerged entry nozzle (SEN) during continuous casting of Al killed low carbon steels[J]. Ironmak Steelmak, 2017, 44(2): 117-127.

    [29] [29] ZHANG L F, WANG Y F, ZUO X J. Flow transport and inclusion motion in steel continuous-casting mold under submerged entry nozzle clogging condition[J]. Metall Mater Trans B, 2008, 39(4): 534-550.

    [30] [30] PAIK Y H, YOON W J, SHIN H C. Static electrification of solid oxide in liquid metal and electrical double layer at the interface[J]. J Colloid Interface Sci, 2004, 269(2): 354-357.

    [31] [31] PAIK Y H, PAN J H, YOON W J. Charging phenomena at the metal oxide-liquid metal interfaces and determination of excess electron density of metal oxide-mercury systems by the induced emf method[J]. J Colloid Interface Sci, 2001, 244(2): 444-446.

    [32] [32] LEITE F L, BUENO C C, DA RóZ A L, et al. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy[J]. Int J Mol Sci, 2012, 13(12): 12773-12856.

    [33] [33] STERN O Z. The theory of the electrolytic double-layer[J]. Elektrochem, 1924, 30: 508-516.

    [34] [34] PARSONS R. The electrical double layer: Recent experimental and theoretical developments[J]. Chem Rev, 1990, 90(5): 813-826.

    [35] [35] KIM J H, LEE J M, SHIN H C, et al. Separation of oxide inclusions from liquid metal in an applied electrostatic field[J]. Met Mater Int, 2003, 9(6): 593-597.

    [36] [36] ZHANG X F, QIN R S. Controlled motion of electrically neutral microparticles by pulsed direct current[J]. Sci Rep, 2015, 5: 10162.

    [37] [37] LU W J, ZHANG X F, QIN R S. Stability of precipitates under electropulsing in 316L stainless steel[J]. Mater Sci Technol, 2015, 31(13): 1530-1535.

    [38] [38] ZHAO Z C, QIN R S. Inclusion agglomeration in electrified molten metal: Thermodynamic consideration[J]. Mater Sci Technol, 2017, 33(12): 1404-1410.

    [40] [40] CHANG Qiuxiang, LIU Tingyu, MA Changmin. Sci Sin Chim, 2016, 46(4): 394-400.

    [41] [41] MATSUNAGA K, TANAKA T, YAMAMOTO T, et al. First-principles calculations of intrinsic defects in Al2O3[J]. Phys Rev B, 2003, 68(8): 085110.

    Tools

    Get Citation

    Copy Citation Text

    LI Hongxia, GU Qiang, LIU Guoqi, YUAN Lei, ZHI Jianjun. Mechanism of Alumina Clogging on Submerged Entry Nozzle[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 381

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: May. 10, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Hongxia LI (lihongx0622@126.com)

    DOI:

    CSTR:32186.14.

    Topics