Optics and Precision Engineering, Volume. 31, Issue 11, 1700(2023)
Fast extraction of buildings from remote sensing images by fusion of CNN and Transformer
[1] [1] 1徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割[J]. 光学 精密工程, 2020, 28(7):1588-1599. doi: 10.37188/OPE.20202807.1588XUSH J, OUYANGP Y, GUOX Y, et al. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Optics and Precision Engineering, 2020, 28(7):1588-1599.(in Chinese). doi: 10.37188/OPE.20202807.1588
[2] [2] 2王舒洋, 慕晓冬, 杨东方, 等. 融合高阶信息的遥感影像建筑物自动提取[J]. 光学 精密工程, 2019, 27(11): 2474-2483. doi: 10.3788/ope.20192711.2474WANGS Y, MUX D, YANGD F, et al. High-order statistics integration method for automatic building extraction of remote sensing images[J]. Optics and Precision Engineering, 2019, 27(11): 2474-2483.(in Chinese). doi: 10.3788/ope.20192711.2474
[3] ZHANG Z X, WANG Y H. JointNet: a common neural network for road and building extraction[J]. Remote Sensing, 11, 696(2019).
[4] PAN X R, YANG F, GAO L R et al. Building extraction from high-resolution aerial imagery using a generative adversarial network with spatial and channel attention mechanisms[J]. Remote Sensing, 11, 917(2019).
[6] ZHANG X Q, XIAO Z H, LI D Y et al. Semantic segmentation of remote sensing images using multiscale decoding network[J]. IEEE Geoscience and Remote Sensing Letters, 16, 1492-1496(2019).
[7] LIU P H, LIU X P, LIU M X et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network[J]. Remote Sensing, 11, 830-848(2019).
[8] HE N J, FANG L Y, PLAZA A. Hybrid first and second order attention Unet for building segmentation in remote sensing images[J]. Science China Information Sciences, 63, 1-12(2020).
[9] ZHENG S X, LU J C, ZHAO H S et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C], 6877-6886(2021).
[10] ZHAO X, GUO J Y, ZHANG Y T et al. Memory-augmented transformer for remote sensing image semantic segmentation[J]. Remote Sensing, 13, 4518(2021).
[11] XU Z Y, ZHANG W C, ZHANG T X et al. Efficient transformer for remote sensing image segmentation[J]. Remote Sensing, 13, 3585(2021).
[12] YUAN W, XU W B. MSST-net: a multi-scale adaptive network for building extraction from remote sensing images based on swin transformer[J]. Remote Sensing, 13, 4743(2021).
[13] CHEN K Y, ZOU Z X, SHI Z W. Building extraction from remote sensing images with sparse token transformers[J]. Remote Sensing, 13, 4441-4462(2021).
[14] LI D, YAO A B, CHEN Q F.
[15] MAGGIORI E, TARABALKA Y, CHARPIAT G et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C], 3226-3229(2017).
[17] LI X, YAO X J, FANG Y. Building-A-nets: robust building extraction from high-resolution remote sensing images with adversarial networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 3680-3687(2018).
[18] MA J J, WU L L, TANG X et al. Building extraction of aerial images by a global and multi-scale encoder-decoder network[J]. Remote Sensing, 12, 2350(2020).
Get Citation
Copy Citation Text
Yunzuo ZHANG, Wei GUO, Cunyu WU. Fast extraction of buildings from remote sensing images by fusion of CNN and Transformer[J]. Optics and Precision Engineering, 2023, 31(11): 1700
Category: Information Sciences
Received: Sep. 15, 2022
Accepted: --
Published Online: Jul. 4, 2023
The Author Email: Yunzuo ZHANG (zhangyunzuo888@sina.com)