Optical Instruments, Volume. 42, Issue 5, 33(2020)
Identifying diabetic retinopathy based on deep transfer learning
[2] [2] STEWART M. Diabetic retinopathy: current pharmacologic treatment emerging strategies[M]. Singape: Springer, 2017.
[5] [5] LI H Q, CHUTATAPE O. Fundus image features extraction[C]Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine Biology Society. Chicago, USA: IEEE, 2000: 3071 3073.
[6] [6] HALOI M. Improved microaneurysm detection using deep neural wks[J]. arXiv: 1505.04424, 2015.
[10] [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image classification with deep convolutional neural wks[C]Proceedings of the 25th International Conference on Neural Infmation Processing Systems. Lake Tahoe, Nevada: ACM, 2012: 19.
[11] BOOTH D E. The cross-entropy method[J]. Technometrics, 50, 92(2008).
[14] SOLANKI K, BHASKARANAND M, RAMACHANDRA C. Clinical validation study of an automated DR screening system using color fundus images against 7-field ETDRS stereoscopic reference standard[J]. EURETINA(2016).
Get Citation
Copy Citation Text
Yuming YAN, Feng LI, Deming LUO, Siyuan YIN, Xiaotian FU, Zheng LIU, Lei YAN. Identifying diabetic retinopathy based on deep transfer learning[J]. Optical Instruments, 2020, 42(5): 33
Category: APPLICATION TECHNOLOGY
Received: Mar. 26, 2020
Accepted: --
Published Online: Jan. 6, 2021
The Author Email: LI Feng (lifenggold@163.com)