Optics and Precision Engineering, Volume. 30, Issue 20, 2501(2022)

Multi-label infrared image classification algorithm based on weakly supervised learning

Chuankai MIAO1... Shuli LOU1,*, Ting LI2 and Huimin CAI2 |Show fewer author(s)
Author Affiliations
  • 1School of Physics and Electronic Information, Yantai University, Yantai264005, China
  • 2Tianjin Jinhang Institute of Technical Physics, Tianjin300308, China
  • show less
    References(17)

    [1] J X WU, H YANG. Linear regression-based efficient SVM learning for large-scale classification. IEEE Transactions on Neural Networks and Learning Systems, 26, 2357-2369(2015).

    [2] [2] 2林春焕. 弱监督学习下的多标签图像分类[D]. 西安: 西安电子科技大学, 2019.LINC H. Multi-label Image Classification Under Weakly Supervised Learning[D]. Xi'an: Xidian University, 2019. (in Chinese)

    [3] P SERMANET, D EIGEN, X ZHANG et al. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint(2013).

    [4] Y C WEI, W XIA, M LIN et al. HCP: a flexible CNN framework for multi-label image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 1901-1907(2016).

    [5] J WANG, Y YANG, J H MAO et al. CNN-RNN: a unified framework for multi-label image classification, 2285-2294(2016).

    [6] T S CHEN, M X XU, X L HUI et al. Learning semantic-specific graph representation for multi-label image recognition, 522-531(2019).

    [7] J LANCHANTIN, T L WANG, V ORDONEZ et al. General multi-label image classification with transformers, 16473-16483(2021).

    [8] X CHENG, H Z LIN, X Y WU et al. MLTR: multi-label classification with transformer, 1-6(2022).

    [9] S LIU, L ZHANG, X YANG et al. Query2Label: A Simple Transformer Way to Multi-Label Classification. arXiv preprint arXiv:, 2021.

    [10] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).

    [11] K ZHU, J X WU. Residual attention: a simple but effective method for multi-label recognition, 184-193(2021).

    [12] Y CUI, M L JIA, T Y LIN et al. Class-balanced loss based on effective number of samples, 9260-9269(2019).

    [13] T WU, Q Q HUANG, Z W LIU et al. Distribution-balanced Loss for Multi-label Classification in Long-tailed Datasets. Computer Vision – ECCV 2020, 162-178(2020).

    [14] T RIDNIK, E BEN-BARUCH, N ZAMIR et al. Asymmetric loss for multi-label classification, 82-91(2021).

    [15] J YE, J J HE, X J PENG et al. Attention-driven Dynamic Graph Convolutional Network for Multi-label Image Recognition. Computer Vision – ECCV 2020, 649-665(2020).

    [16] R C YOU, Z Y GUO, L CUI et al. Cross-modality attention with semantic graph embedding for multi-label classification. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12709-12716(2020).

    [17] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).

    CLP Journals

    [1] Shuxin LIU, Hui WU, Daihua WANG, Junchao SHE. Multimode composite guidance data fusion method and its experimental validation[J]. Optics and Precision Engineering, 2025, 33(4): 512

    [2] Shuxin LIU, Hui WU, Daihua WANG, Junchao SHE. Multimode composite guidance data fusion method and its experimental validation[J]. Optics and Precision Engineering, 2025, 33(4): 512

    Tools

    Get Citation

    Copy Citation Text

    Chuankai MIAO, Shuli LOU, Ting LI, Huimin CAI. Multi-label infrared image classification algorithm based on weakly supervised learning[J]. Optics and Precision Engineering, 2022, 30(20): 2501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 9, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: LOU Shuli (shulilou@sina.com)

    DOI:10.37188/OPE.20223020.2501

    Topics