Optics and Precision Engineering, Volume. 30, Issue 20, 2501(2022)
Multi-label infrared image classification algorithm based on weakly supervised learning
[1] J X WU, H YANG. Linear regression-based efficient SVM learning for large-scale classification. IEEE Transactions on Neural Networks and Learning Systems, 26, 2357-2369(2015).
[2] [2] 2林春焕. 弱监督学习下的多标签图像分类[D]. 西安: 西安电子科技大学, 2019.LINC H. Multi-label Image Classification Under Weakly Supervised Learning[D]. Xi'an: Xidian University, 2019. (in Chinese)
[3] P SERMANET, D EIGEN, X ZHANG et al. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint(2013).
[4] Y C WEI, W XIA, M LIN et al. HCP: a flexible CNN framework for multi-label image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 1901-1907(2016).
[5] J WANG, Y YANG, J H MAO et al. CNN-RNN: a unified framework for multi-label image classification, 2285-2294(2016).
[6] T S CHEN, M X XU, X L HUI et al. Learning semantic-specific graph representation for multi-label image recognition, 522-531(2019).
[7] J LANCHANTIN, T L WANG, V ORDONEZ et al. General multi-label image classification with transformers, 16473-16483(2021).
[8] X CHENG, H Z LIN, X Y WU et al. MLTR: multi-label classification with transformer, 1-6(2022).
[9] S LIU, L ZHANG, X YANG et al. Query2Label: A Simple Transformer Way to Multi-Label Classification. arXiv preprint arXiv:, 2021.
[10] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[11] K ZHU, J X WU. Residual attention: a simple but effective method for multi-label recognition, 184-193(2021).
[12] Y CUI, M L JIA, T Y LIN et al. Class-balanced loss based on effective number of samples, 9260-9269(2019).
[13] T WU, Q Q HUANG, Z W LIU et al. Distribution-balanced Loss for Multi-label Classification in Long-tailed Datasets. Computer Vision – ECCV 2020, 162-178(2020).
[14] T RIDNIK, E BEN-BARUCH, N ZAMIR et al. Asymmetric loss for multi-label classification, 82-91(2021).
[15] J YE, J J HE, X J PENG et al. Attention-driven Dynamic Graph Convolutional Network for Multi-label Image Recognition. Computer Vision – ECCV 2020, 649-665(2020).
[16] R C YOU, Z Y GUO, L CUI et al. Cross-modality attention with semantic graph embedding for multi-label classification. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12709-12716(2020).
[17] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).
Get Citation
Copy Citation Text
Chuankai MIAO, Shuli LOU, Ting LI, Huimin CAI. Multi-label infrared image classification algorithm based on weakly supervised learning[J]. Optics and Precision Engineering, 2022, 30(20): 2501
Category: Information Sciences
Received: May. 9, 2022
Accepted: --
Published Online: Oct. 27, 2022
The Author Email: LOU Shuli (shulilou@sina.com)