Acta Optica Sinica, Volume. 42, Issue 17, 1714001(2022)

XingGuang-Extreme Laser Facility

Yaping Dai1,2, Jingqin Su1,2, Xiaofeng Wei1、*, Yuchi Wu1,2, Lanqin Liu1,2, Ping Li1,2, Wenyi Wang1,2, Donghui Lin1,2, Liangfu Guo1,2, Yong Chen1,2, Mingzhong Li1,2, Xiaocheng Tian1,2, Xiaoming Zeng1,2, Yanlei Zuo1,2, Kainan Zhou1,2, Xiongwei Yan1,2, Shukai He1,2, and Jun Dong1,2
Author Affiliations
  • 1Zhongshan Photon Science, Zhongshan 528400, Guangdong, China
  • 2Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • show less
    References(47)

    [2] Mourou G A, Labaune C L, Dunne M et al. Relativistic laser-matter interaction: from attosecond pulse generation to fast ignition[J]. Plasma Physics and Controlled Fusion, 49, B667-B675(2007).

    [4] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [5] Danson C N, Haefner C, Bromage J et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, 172-225(2019).

    [6] Bashinov A V, Gonoskov A A, Kim A V et al. New horizons for extreme light physics with mega-science project XCELS[J]. The European Physical Journal Special Topics, 223, 1105-1112(2014).

    [7] Bromage J, Bahk S W, Begishev I A et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 7, 31-41(2019).

    [8] Wang X L, Liu X Y, Lu X M et al. 13.4 fs, 0.1 Hz OPCPA front end for the 100 PW-class laser facility[J]. Ultrafast Science, 2022, 9894358(2022).

    [9] Zhu Q H, Zhou K N, Su J Q et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 15, 015301(2018).

    [10] Weber S, Bechet S, Borneis S et al. P3: an installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2, 149-176(2017).

    [11] Yoon J W, Choi I, Sung J et al. Realization of laser intensity over 10²³ W/cm2[J]. Optica, 8, 630-635(2021).

    [12] Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 78, 591-640(2006).

    [13] Ehlotzky F, Krajewska K, Kamiński J Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power[J]. Reports on Progress in Physics, 72, 046401(2009).

    [14] di Piazza A, Müller C, Hatsagortsyan K Z et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 84, 1177-1228(2012).

    [15] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 82, 664-679(1951).

    [16] Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. The European Physical Journal Special Topics, 223, 979-984(2014).

    [17] Kraus R G, Hemley R J, Ali S J et al. Measuring the melting curve of iron at super-Earth core conditions[J]. Science, 375, 202-205(2022).

    [18] Zhang Y J, Lin J F. Molten iron in Earth-like exoplanet cores[J]. Science, 375, 146-147(2022).

    [19] Batani D. Matter in extreme conditions produced by lasers[J]. EPL (Europhysics Letters), 114, 65001(2016).

    [20] Batani K, Batani D, He X T et al. Recent progress in matter in extreme states created by laser[J]. Matter and Radiation at Extremes, 7, 013001(2021).

    [21] Takabe H, Kuramitsu Y. Recent progress of laboratory astrophysics with intense lasers[J]. High Power Laser Science and Engineering, 9, e49(2021).

    [22] Zhong J Y, Li Y T, Wang X G et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 6, 984-987(2010).

    [23] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 78, 755-807(2006).

    [24] Johnson M G, Zylstra A B, Bacher A et al. Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics[J]. Physics of Plasmas, 24, 041407(2017).

    [25] Fu C B, Bao J, Chen L M et al. Laser-driven plasma collider for nuclear studies[J]. Science Bulletin, 60, 1211-1213(2015).

    [26] Ledingham K W D, McKenna P, McCanny T et al. High power laser production of short-lived isotopes for positron emission tomography[J]. Journal of Physics D, 37, 2341-2345(2004).

    [27] Zagrebaev V I, Karpov A V, Mishustin I N et al. Production of heavy and superheavy neutron-rich nuclei in neutron capture processes[J]. Physical Review C, 84, 044617(2011).

    [28] Hill P, Wu Y B. Exploring laser-driven neutron sources for neutron capture cascades and the production of neutron-rich isotopes[J]. Physical Review C, 103, 014602(2021).

    [29] He J J, Zhou X H, Zhang Y H. Experimental studies of nuclear astrophysics[J]. Physics, 42, 484-495(2013).

    [30] Ur C A, Balabanski D, Cata-Danil G et al. The ELI-NP facility for nuclear physics[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 355, 198-202(2015).

    [31] Chen S N, Negoita F, Spohr K et al. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory[J]. Matter and Radiation at Extremes, 4, 054402(2019).

    [32] Higginson A, Gray R J, King M et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 9, 724(2018).

    [33] Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 85, 751-793(2013).

    [34] Gonsalves A J, Nakamura K, Daniels J et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 122, 084801(2019).

    [35] Svensson J B, Guénot D, Ferri J et al. Low-divergence femtosecond X-ray pulses from a passive plasma lens[J]. Nature Physics, 17, 639-645(2021).

    [36] Ta Phuoc K, Corde S, Thaury C et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 6, 308-311(2012).

    [37] Dong K G, Zhang T K, Yu M H et al. Micro-spot gamma-ray generation based on laser wakefield acceleration[J]. Journal of Applied Physics, 123, 243301(2018).

    [38] Günther M M, Rosmej O N, Tavana P et al. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science[J]. Nature Communications, 13, 170(2022).

    [39] Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 58, 103001(2016).

    [40] Daido H, Nishiuchi M, Pirozhkov A S. Review of laser-driven ion sources and their applications[J]. Reports on Progress in Physics, 75, 056401(2012).

    [41] Wehrenberg C E, McGonegle D, Bolme C et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics[J]. Nature, 550, 496-499(2017).

    [42] Mo M Z, Chen Z, Li R K et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction[J]. Science, 360, 1451-1455(2018).

    [43] Wang Y, Li J, Zhang S et al. Applications of X-ray absorption fine structure in materials science[J]. Materials China, 36, 188-194(2017).

    [44] Mahieu B, Jourdain N, Ta Phuoc K et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source[J]. Nature Communications, 9, 3276(2018).

    [45] Kettle B, Gerstmayr E, Streeter M J V et al. Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source[J]. Physical Review Letters, 123, 254801(2019).

    [46] Wang Y D, Zhang Z W, Li S L et al. Application of synchrotron-based high-energy X-ray diffraction in materials research[J]. Materials China, 36, 168-174, 194(2017).

    [47] Merano M, Sonderegger S, Crottini A et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence[J]. Nature, 438, 479-482(2005).

    [48] Li Z, Klein T R, Kim D H et al. Scalable fabrication of perovskite solar cells[J]. Nature Reviews Materials, 3, 18017(2018).

    Tools

    Get Citation

    Copy Citation Text

    Yaping Dai, Jingqin Su, Xiaofeng Wei, Yuchi Wu, Lanqin Liu, Ping Li, Wenyi Wang, Donghui Lin, Liangfu Guo, Yong Chen, Mingzhong Li, Xiaocheng Tian, Xiaoming Zeng, Yanlei Zuo, Kainan Zhou, Xiongwei Yan, Shukai He, Jun Dong. XingGuang-Extreme Laser Facility[J]. Acta Optica Sinica, 2022, 42(17): 1714001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Apr. 24, 2022

    Accepted: Jun. 20, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Wei Xiaofeng (xfwei@caep.cn)

    DOI:10.3788/AOS202242.1714001

    Topics