Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0615010(2025)

Point Cloud Registration Based on Surface Feature Degree and Improved Dung Beetle Optimization Algorithm

Junchao Zhu*... Siyuan Song, Fangfang Han and Minghui Zhang |Show fewer author(s)
Author Affiliations
  • School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
  • show less
    Figures & Tables(14)
    Point cloud surface normal vector variation diagram. (a) Flat surface variation; (b) dramatic surface change
    Flow chart of point cloud registration based on ST-DBO algorithm
    Unregistered point cloud data. (a) Bunny; (b) dragon; (c) toy; (d) airplane; (e) chair
    Images corresponding to collected point cloud data. (a) Toy 01; (b) toy 02
    Registration results of different feature extraction methods in point cloud model. (a) SIFT; (b) ISS; (c) Harris3d; (d) proposed method
    Comparison of effects of different registration algorithms. (a) ICP; (b) SSA; (c) PSO; (d) GWO; (e) DBO; (f) ST-DBO
    Registration results of different feature extraction methods in noise point cloud model. (a) SIFT; (b) ISS; (c) Harris3d; (d) proposed method
    Comparison of the effects of different registration algorithms in the noise point cloud model. (a) ICP; (b) SSA; (c) PSO; (d) GWO; (e) DBO; (f) ST-DBO
    Registration accuracy changes under different parameter settings
    • Table 0. [in Chinese]

      View table

      Table 0. [in Chinese]

      Algorithm 1t-distribution perturbation strategy for adaptive probability

      Require: Iterations M, Population size N, bound ub,lb

      Ensure: Optimal position X and its fitness value fmin

      1: w1←0.5; w2←0.1;

      2: while tM do

      3:  Calculate adaptive probability p = w1-w2×(M-t)/M

      4:    for j = 1 to N do

      5:    if p < rand then

      6:    Generate new position Temp using t-distribution: Temp = xi, :) + xi, :) × trnd(i

      7:   Ensure Temp is within bounds: Temp = max[min(Tempub), lb

      8:        Calculate fitness value fitvalue = fobj(Temp

      9:        if fitvalue < fit(j) then

      10:        Update position xj, :)= Temp

      11:        Update fitness fit(j) = fitvalue

      12:        end if

      13:   end if

      14:   end for

      14: Update position best X =xj,:),global best fitness fmin=fit(j

      15: t = t + 1

      16: end while

      17: Output optimal position best X and its fitness value fmin

    • Table 1. Comparison of registration accuracy and extraction efficiency of different feature extraction methods

      View table

      Table 1. Comparison of registration accuracy and extraction efficiency of different feature extraction methods

      AlgorithmSIFTISSHarris3dProposed
      RMSETime /sRMSETime /sRMSETime /sRMSETime /s
      Bunny0.003901.680.0045024.570.003839.400.003231.25
      Dragon0.002021.720.0021920.880.002128.110.001911.77
      Toy1.6660027.491.5080039.071.9050010.271.479002.15
      Airplane0.002941.130.002800.850.006730.840.002071.10
      Chair0.006841.840.003620.980.005801.120.002991.15
    • Table 2. Comparison of the results of different registration algorithms

      View table

      Table 2. Comparison of the results of different registration algorithms

      AlgorithmBunny RMSEDragon RMSEToy RMSEAirplane RMSEChair RMSEImproved accuracy /%
      ICP0.004180.002311.5060.005810.0044327.74
      SSA0.003470.002121.5210.003640.0043118.67
      PSO0.003500.002231.5810.003740.0050022.67
      GWO0.003560.002111.6160.005430.0068829.13
      DBO0.003640.002221.7680.002880.0032115.31
      ST-DBO0.003230.001911.4790.002070.00299
    • Table 3. Comparison of registration accuracy and extraction efficiency of different feature extraction methods under the noise point cloud model

      View table

      Table 3. Comparison of registration accuracy and extraction efficiency of different feature extraction methods under the noise point cloud model

      AlgorithmSIFTISSHarris3dProposed
      RMSETime /sRMSETime /sRMSETime /sRMSETime /s
      Bunny0.004321.720.0055123.540.004058.580.003301.30
      Toy1.7030026.261.5400044.512.0040010.161.520001.69
      Airplane0.003682.140.004100.870.007220.850.002391.10
    • Table 4. Comparison of results of different registration algorithms after adding of noise

      View table

      Table 4. Comparison of results of different registration algorithms after adding of noise

      AlgorithmDragon RMSEToy RMSEChair RMSEImproved accuracy /%
      ICP0.003011.9110.0113041.92
      SSA0.003921.7550.0079840.78
      PSO0.002851.6260.0081832.43
      GWO0.002861.8080.0126040.22
      DBO0.003031.8660.0038323.01
      ST-DBO0.002001.5190.00320
    Tools

    Get Citation

    Copy Citation Text

    Junchao Zhu, Siyuan Song, Fangfang Han, Minghui Zhang. Point Cloud Registration Based on Surface Feature Degree and Improved Dung Beetle Optimization Algorithm[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0615010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 9, 2024

    Accepted: Sep. 3, 2024

    Published Online: Mar. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241656

    Topics