Infrared and Laser Engineering, Volume. 52, Issue 2, 20220338(2023)

Transformer-based multi-source images instance segmentation network for composite materials

Yan Ke1, Yun Fu2, Weizhu Zhou1, and Weidong Zhu1
Author Affiliations
  • 1School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
  • 2Xizi Spirit Aerospace Industry (Zhejiang) Ltd, Hangzhou 310018, China
  • show less
    References(26)

    [1] J Brüning, B Denkena, M A Dittrich, et al. Machine learning approach for optimization of automated fiber placement processes. Procedia CIRP, 66, 74-78(2017).

    [2] [2] Harik R, Saidy C, Williams S J, et al. Automated fiber placement defect identity cards: Cause, anticipation, existence, significance, progression[R]. 2018.

    [3] T Rudberg, J Nielson, M Henscheid, et al. Improving AFP cell performance. SAE International Journal of Aerospace, 7, 317(2014).

    [4] L W Wen, Q H Song, L H Qin, et al. Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC. Acta Aeronautica et Astronautica Sinica, 36, 3991-4000(2015).

    [5] [5] Wei T S. Research on image detection method f defects of composite prepreg tapes[D]. Zibo: Shong University of Technology, 2018. (in Chinese)

    [6] [6] Ritter J A, Sjogren J F. Realtime infrared thermography inspection control f automated composite marterial layup: US. Patent 7, 513, 964[P]. 20090407.

    [7] B Denkena, C Schmidt, K Völtzer, et al. Thermographic online monitoring system for automated fiber Placement processes. Composites Part B: Engineering, 97, 239-243(2016).

    [8] C Schmidt, B Denkena, K Völtzer, et al. Thermal image-based monitoring for the automated fiber placement process. Procedia CIRP, 62, 27-32(2017).

    [9] [9] Chen M, Jiang M, Liu X, et al. Intelligent inspection system based on infrared vision f automated fiber placement[C]2018 IEEE International Conference on Mechatronics Automation (ICMA). IEEE, 2018: 918923.

    [10] X Wang, S Kang, W D Zhu. Defect detection of laminated surface in the automated fiber placement process based on improved CenterNet. Infrared and Laser Engineering, 50, 20210011(2021).

    [11] [11] Gregy E D, Juarez P D. Insitu thermography of automated fiber placement parts[C]AIP Conference Proceedings, 2018, 1949(1): 060005.

    [12] [12] Juarez P D, Gregy E D. In situ thermal inspection of automated fiber placement manufacturing[C]AIP Conference Proceedings, 2019, 2102(1): 120005.

    [13] P D Juarez, E D Gregory. In situ thermal inspection of automated fiber placement for manufacturing induced defects. Composites Part B: Engineering, 220, 109002(2021).

    [14] S Kang, Z Z Ke, X Wang, et al. Detection method of defects in automatic fiber placement based on fusion of infrared and visible images. Acta Aeronautica et Astronautica Sinica, 43, 556-568(2022).

    [15] C Sacco, A B Radwan, A Anderson, et al. Machine learning in composites manufacturing: A case study of automated fiber placement inspection. Composite Structures, 250, 112514(2020).

    [16] [16] Sacco C. Machine learning methods f rapid inspection of automated fiber placement manufactured composite structures[D]. US: University of South Carolina, 2019: 5768.

    [17] [17] Vaswani A, Shazeer N, Parmar N, et al . Attention is all you need [C]31st Annual Conference on Neural Infmation Processing Systems, 2017: 5999 6009.

    [18] [18] Carion N, Massa F, Synnaeve G, et al. Endtoend object detection with transfmers[C]European Conference on Computer Vision. Springer, 2020: 213229.

    [19] [19] Zhu X, Su W, Lu L, et al. Defmable detr: Defmable transfmers f endtoend object detection[EBOL]. (20201008)[20220620]. https:arxiv.gabs2010.04159.

    [20] [20] Zheng S, Lu J, Zhao H, et al. Rethinking semantic segmentation from a sequencetosequence perspective with transfmers[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2021: 68816890.

    [21] [21] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is wth 16x16 wds: Transfmers f image recognition at scale[C]International Conference on Learning Representations, 2020.

    [22] [22] Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transfmers f visual recognition[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2021: 1651916529.

    [23] [23] Zhang Z. Flexible camera calibration by viewing a plane from unknown ientations[C]Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, 1999: 666673.

    [24] [24] Bolya D, Zhou C, Xiao F, et al. Yolact: Realtime instance segmentation[C]Proceedings of the IEEECVF International Conference on Computer Vision, 2019: 91579166.

    [25] [25] Hu J, Shen L, Sun G. Squeezeexcitation wks[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 71327141.

    [26] [26] Zhang D, Zhang H, Tang J, et al. Feature pyra transfmer[C]European Conference on Computer Vision. Springer, 2020: 323339.

    Tools

    Get Citation

    Copy Citation Text

    Yan Ke, Yun Fu, Weizhu Zhou, Weidong Zhu. Transformer-based multi-source images instance segmentation network for composite materials[J]. Infrared and Laser Engineering, 2023, 52(2): 20220338

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Photoelectric measurement

    Received: Jun. 20, 2022

    Accepted: --

    Published Online: Mar. 13, 2023

    The Author Email:

    DOI:10.3788/IRLA20220338

    Topics