Infrared and Laser Engineering, Volume. 50, Issue 9, 20210283(2021)
Generation of optical vortex beams via metasurfaces (Invited)
[1] [1] Gbur G J. Singular Optics[M]. US: CRC Press Tayl & Francis Group, 2017.
[2] Yao M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Adv Opt Photon, 3, 161(2011).
[3] Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 336, 165-190(1974).
[4] Coullet P, Gil G, Rocca F. Optical vortices[J]. Opt Commun, 73, 403-408(1989).
[5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 45, 8185(1992).
[6] Beijersbergen M W, Allen L, Vanderveen H, et al. Astigmatic laser mode converters and transfer of orbital angular-momentum[J]. Opt Commun, 96, 123(1993).
[7] Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon[J]. Opt Commun, 177, 297-301(2000).
[8] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Opt Lett, 38, 534-536(2013).
[9] Yang Y J, Dong Y, Zhao C L, et al. Generation and propagation of an anomalous vortex beam[J]. Opt Lett, 38, 5418-5421(2013).
[10] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).
[11] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 6, 488-496(2012).
[12] Zhang H, Li X Z, Ma H X, et al. Grafted optical vortex with controllable orbital angular momentum distribution[J]. Optics Express, 27, 22930(2019).
[13] Grier D G. A Revolution in optical manipulation[J]. Nature, 424, 810-816(2003).
[14] Friese M E J, Nieminen T A, Heckenberg N R, et al. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 394, 348-350(1998).
[15] Yang Y J, Zhao Q, Liu L L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates[J]. Phys Rev Appl, 12, 064007(2019).
[16] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).
[17] Stav T, Faerman A, Maguid E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 361, 1101-1103(2018).
[18] Lavery M, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 341, 537-540(2013).
[19] Gauthier D, Ribic P R, Adhikary G, et al. Tunable orbital angular momentum in high-harmonic generation[J]. Nat Commun, 8, 14971(2017).
[20] Kong F, Zhang C, Bouchard F, et al. Controlling the orbital angular momentum of high harmonic vortices[J]. Nat Commun, 8, 14970(2017).
[21] Guo Zhongyi, Gong Chaofan, Liu Hongjun, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 47, 90-123(2020).
[22] Wang T, Wang F, Shi F, et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler[J]. J Lightwave Technol, 35, 2161-2166(2017).
[23] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Opt Commun, 112, 321-327(1994).
[24] Bazhenov V, Vasnetsov M, Soskin M. Laser beams with screw dislocations in their wavefronts[J]. Jetp Letter, 52, 429-431(1990).
[25] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Opt Express, 25, 25697-25706(2017).
[26] Padgett M J, Allen L. Orbital angular momentum exchange in cylindrical-lens mode converters[J]. J Opt B: Quantum Semiclass Opt, 4, S17-S19(2002).
[27] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012).
[28] Marqués R, Martel J, Mesa F, et al. A new 2D isotropic left-handed metamaterial design: Theory and experiment[J]. Microw Opt Techn Let, 35, 405-408(2002).
[29] Holloway C L, Kuester E F, Baker-Jarvis J, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix[J]. IEEE T Antenn and Propag, 51, 2596-2603(2003).
[30] Sihvola A. Metamaterials in electromagnetics[J]. Metamaterials, 1, 2-11(2007).
[31] Shamonina E, Solymar L. Metamaterials: How the subject started[J]. Metamaterials, 1, 12-18(2007).
[32] Lapine M, Tretyakov S. Contemporary notes on metamaterials[J]. Iet Microw Antenna P, 1, 3-11(2007).
[33] Holloway C L, Kuester E F, O’Hara A J, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antenn and Propag M, 54, 10-35(2012).
[34] Chen H T, Taylor A J, Yu N. A review of metasurfaces: Physics and applications[J]. Rep Prog Phys, 79, 076401(2016).
[35] Yu N F, Patrice G, Kats M, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 334, 333(2011).
[36] Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427(2012).
[37] Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Materials, 11, 426-431(2012).
[38] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Lett, 12, 1702-1706(2012).
[39] Cheng H, Liu Z, Chen S, et al. Emergent functionality and controllability in few-layer metasurfaces[J]. Adv Mater, 27, 5410-5421(2015).
[40] Novotny L, Hulst N V. Antennas for light[J]. Nat Photon, 5, 83-90(2011).
[41] Bharadwaj P, Deutsch B, Novotny L. Optical Antennas[J]. Adv Opt Photon, 1, 438-483(2009).
[42] Lin J, Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 340, 331-334(2013).
[43] Walther B, Helgert C, Rockstuhl C, et al. Spatial and spectral light shaping with metamaterials[J]. Adv Mater, 24, 6300-6304(2012).
[44] Wang X W, Nie Z Q, Liang Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 7, 1533-1556(2018).
[45] Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Adv Optical Mater, 6, 1800104(2018).
[46] Arbabi A, Faraon A. Fundamental limits of ultrathin metasurfaces[J]. A Sci Rep, 7, 43722(2017).
[47] Sun J, Wang X, Xu T, et al. Spinning light on the nanoscale[J]. Nano Lett, 14, 2726(2014).
[48] Kim M, Wong A M H, Eleftheriades G V. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients[J]. Phys Rev X, 4, 41042(2014).
[49] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Phys Rev Lett, 110, 203903(2013).
[50] Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surface[J]. Adv Opt Mater, 3, 813(2015).
[51] Zhao Q, Zhou J, Zhang F, et al. Mie resonance-based dielectric metamaterials[J]. Mater Today, 12, 60(2009).
[52] Zhou L, Withayachumnankul W, Shah C M, et al. Dielectric resonator nanoantennas at visible frequencies[J]. Opt Express, 21, 1344(2013).
[53] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays[J]. Nat Commun, 6, 7069(2015).
[54] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasrfaces[J]. Optica, 4, 139-152(2017).
[55] Chong K E, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Lett, 15, 5369-5374(2015).
[56] Yang Y J, Zhu X, Zeng J, et al. Anomalous Bessel vortex beam: Modulating orbital angular momentum with propagation[J]. Nanophotonics, 7, 677-682(2018).
[57] Wang H, Liu L, Zhou C, et al. Vortex beam generation with variable topological charge based on a spiral slit[J]. Nanophotonics, 8, 317-324(2019).
[58] Zhang J R, Guo Z Y, Li R Z, et al. Circular polarization analyzer based on the combined coaxial Archimedes’spiral structure[J]. Plasmonics, 10, 1255-1261(2015).
[59] Tomoki O, Shintaro M. Study of surface plasmon chirality induced by Archimedes’ spiral grooves[J]. Opt Express, 14, 6285-6290(2006).
[60] Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Phys Rev Lett, 93, 083901(2004).
[61] Li G X, Kang M, Chen S M, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light[J]. Nano Lett, 13, 4148-4151(2013).
[62] Moon S W, Jeong H D, Lee S, et al. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation[J]. Opt Express, 27, 19119-19129(2019).
[63] Chen C F, Ku C T, Tai Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface[J]. Nano Lett, 15, 2746-2750(2015).
[64] Tang B, Zhang B, Ding J. Generating a plasmonic vortex field with arbitrary topological charges and positions by meta-nanoslits[J]. Appl Optics, 58, 833-840(2019).
[65] Tan Q L, Guo Q H, Liu H C, et al. Controlling plasmonic orbital angular momentum by combining geometric and dynamic phase[J]. Nanoscale, 9, 4944-4949(2017).
[66] Kim H, Park J, Cho S W, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J]. Nano Letters, 10, 529-536(2010).
[67] Lee S, Kim S, Kwon H, et al. Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits[J]. IEEE Photonic Tech Lett, 27, 705-708(2015).
[68] Pancharatnam S. Generalized theory of interference and its applications[J]. Indian Acad Sci, 44, 398-417(1956).
[69] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 392, 45-57(1984).
[70] Teng S Y, Zhang Q, Wang H, et al. Conversion between polarization states based on a metasurface[J]. Photonics Res, 7, 246(2019).
[71] Karimi E, Schulz S A, Leon I D, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light Sci Appl, 3, e167(2014).
[72] Zhang Y C, Liu W W, Gao J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces[J]. Adv Optical Mater, 6, 1701228(2018).
[73] Li Z W, Hao J M, Huang L R, et al. Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes[J]. Opt Express, 24, 8788-8796(2016).
[74] [74] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spintobital angular momentum conversion of light [J]. Science, 2017, 358: 896901.
[75] Guo Y H, Pu M B, Zhao Z Y. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 3, 2022-2099(2016).
[76] Zhou J, Liu Y, Ke Y, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phase[J]. Opt Lett, 40, 3193(2015).
[77] Fan Q, Wang D, Huo P, et al. Autofocusing Airy beams generated by all-dielectric metasurface for visible light[J]. Opt Express, 25, 9285(2017).
[78] Chen S, Cai Y, Li G, et al. Geometric metasurface fork gratings for vortex-beam generation and manipulation[J]. Laser Photon Rev, 10, 322(2016).
[79] Zhang L, Liu S, Li L, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces[J]. ACS Appl Mater Interfaces, 9, 36447(2017).
[80] Yue F, Wen D, Zhang C, et al. Multichannel polarization controllable superpositions of orbital angular momentum states[J]. Adv Mater, 29, 1603838(2017).
[81] Bliokh K Y. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect[J]. Phys Rev Lett, 97, 43901(2006).
[82] Xiao S, Wang J, Liu F, et al. Spin-dependent optics with metasurfaces[J]. Nanophotonics, 6, 215(2017).
[83] Ling X, Zhou X, Huang K, et al. Recent advances in the spin Hall effect of light[J]. Rep Prog Phys, 80, 664011(2017).
[84] Shitrit N, Yulevich I, Maguid E, et al. Spin-optical metamaterial route to spin-controlled photonics[J]. Science, 340, 724(2013).
[85] Ling X, Zhou X, Yi X, et al. Giant photonics spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence[J]. Light Sci Appl, 4, e290(2015).
[86] Gabor D. A new microscopic principle[J]. Nature, 161, 117(1948).
[87] Cathey W. Phase holograms, phase-only holograms, and kinoforms[J]. Appl Opt, 9, 1478(1970).
[88] Huang K, Gao H, Cao G, et al. Design of diffractive phase element for modulating the electric field at the out-of-focus plane in a lens system[J]. Appl Opt, 51, 5149(2012).
[89] Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 4, 2808(2013).
[90] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress[J]. Rep Prog Phys, 78, 24401(2015).
[91] Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 4, 2807(2013).
[92] Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum[J]. Light Sci Appl, 7, 17156(2018).
[93] Min C, Liu J, Lei T, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram[J]. Laser Photon Rev, 10, 978(2016).
[94] Zhan A, Colburn S, Trivedi R, et al. Low-contrast dielectric metasurface optics[J]. ACS Photonics, 3, 209(2016).
[95] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Adv Opt Photonics, 7, 66-106(2015).
[96] Jin J J, Pu M B, Wang Y Q, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Adv Mater Technol, 2, 1600201(2017).
[97] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings[J]. Opt Lett, 35, 3495(2010).
[98] Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light Sci Appl, 4, e257(2015).
[99] Chen S Q, Liu W W, Li Z C, et al. Metasurface empowered optical multiplexing and multifunction[J]. Adv Mater, 32, 1805912(2019).
[100] Liu W W, Li Z C, Cheng H, et al. Momentum analysis for metasurfaces[J]. Phys Rev Appl, 8, 014012(2017).
[101] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 352, 1202(2016).
[102] Mehmood M Q, Mei S, Hussain S, et al. Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Adv Mater, 28, 2533(2016).
[103] Maguid E, Yulevich I, Yannai M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light Sci Appl, 6, e17027(2017).
[104] Zhang C, Yue F, Wen D, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams[J]. ACS Photonics, 4, 1906(2017).
[105] Lin D, Holsteen A L, Maguid E, et al. Photonic multitasking interleaved Si nanoantenna phased array[J]. Nano Lett, 16, 7671(2016).
[106] Zeng J, Li L, Yang X, et al. Generating and separating twisted light by gradient–rotation split-ring antenna meatasurfaces[J]. Nano Lett, 16, 3101(2016).
[107] Huang L L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces[J]. ACS Photonics, 4, 338-346(2017).
Get Citation
Copy Citation Text
Haoran Lv, Yihua Bai, Ziwei Ye, Miao Dong, Yuanjie Yang. Generation of optical vortex beams via metasurfaces (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210283
Category: Special issue-Manipulation on optical vortex and its sensing application
Received: Apr. 30, 2021
Accepted: --
Published Online: Oct. 28, 2021
The Author Email: Yuanjie Yang (dr.yang2003@uestc.edu.cn)