Chinese Journal of Quantum Electronics, Volume. 41, Issue 2, 349(2024)

All⁃optical mass sensing based on hybrid nanomechanical oscillator system

ZHU Pengjie and CHEN Huajun*
Author Affiliations
  • School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
  • show less
    References(31)

    [1] Yan X Q, Chen H J. Optical transmission characteristics in cavity optomechanical system[J]. Chinese Journal of Quantum Electronics, 37, 165-171(2020).

    [2] Zhang C Y, Pan G X, Li H et al. Stable entanglement of movable mirror and cavity field generated via Λ-type three-level atoms[J]. Chinese Journal of Quantum Electronics, 37, 63-69(2020).

    [3] Yang J Y, Chen H J. All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system[J]. Acta Physica Sinica, 68, 246302(2019).

    [4] Hou B C, Chen H J. Coherent optical transmission characteristics based on magneto-optical force system[J]. Acta Optica Sinica, 41, 2127001(2021).

    [5] Chen H J, Li Y, Chen C Z et al. All-optical mass sensing based on monolayer molybdenum disulfide nano-mechanical oscillator[J]. Acta Optica Sinica, 37, 0123001(2017).

    [6] Li J J. Light Propagation and Application in Generalized Nano-Optomechanical Systems[D](2012).

    [7] Balasubramanian G, Chan I Y, Kolesov R et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 455, 648-651(2008).

    [8] Chen H J. Nanoresonator enhancement of Majorana-Fermion-induced slow light in superconducting iron chains[J]. Micromachines, 12, 1435(2021).

    [9] Chen H J. Phonon pump enhanced fast and slow light in a spinning optomechanical system[J]. Results in Physics, 31, 105002(2021).

    [10] Chen H J. Manipulation of fast and slow light propagation by photonic-molecule optomechanics[J]. Journal of Applied Physics, 124, 153102(2018).

    [11] Childress L, Hanson R. Diamond NV centers for quantum computing and quantum networks[J]. MRS Bulletin, 38, 134-138(2013).

    [12] Rondin L, Tetienne J P, Hingant T et al. Magnetometry with nitrogen-vacancy defects in diamond[J]. Reports on Progress in Physics, 77, 056503(2014).

    [13] Teissier J, Barfuss A, Appel P et al. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator[J]. Physical Review Letters, 113, 020503(2014).

    [14] Ovartchaiyapong P, Lee K W, Myers B A et al. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator[J]. Nature Communications, 5, 4429(2014).

    [15] Sader J E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J]. Journal of Applied Physics, 84, 64-76(1998).

    [16] Pang W, Zhao H Y, Kim E S et al. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection[J]. Lab on a Chip, 12, 29-44(2012).

    [17] Burg T P, Godin M, Knudsen S M et al. Weighing of biomolecules, single cells and single nanoparticles in fluid[J]. Nature, 446, 1066-1069(2007).

    [18] Lee J, Shen W J, Payer K et al. Toward attogram mass measurements in solution with suspended nanochannel resonators[J]. Nano Letters, 10, 2537-2542(2010).

    [19] Bennett S D, Kolkowitz S, Unterreithmeier Q P et al. Measuring mechanical motion with a single spin[J]. New Journal of Physics, 14, 125004(2012).

    [20] Oort E V, Glasbeek M. Electric-field-induced modulation of spin echoes of N-V centers in diamond[J]. Chemical Physics Letters, 168, 529-532(1990).

    [21] Dolde F, Fedder H, Doherty M W et al. Electric-field sensing using single diamond spins[J]. Nature Physics, 7, 459-463(2011).

    [22] Agrawal G P, Boyd R W[M]. Contemporary Nonlinear Optics(1992).

    [23] Jarmola A, Acosta V M, Jensen K et al. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond[J]. Physical Review Letters, 108, 197601(2012).

    [24] Acosta V M, Bauch E, Ledbetter M P et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond[J]. Physical Review Letters, 104, 070801(2010).

    [25] Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Physics Reports, 525, 223-254(2013).

    [26] Chen H J. High-resolution biomolecules mass sensing based on a spinning optomechanical system with phonon pump[J]. Applied Physics Express, 14, 082005(2021).

    [27] Jiang C, Cui Y S, Zhu K D. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems[J]. Optics Express, 22, 13773-13783(2014).

    [28] Chen H J, Zhu K D. Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS2 nanoresonator[J]. Journal of the Optical Society of America B, 31, 1684-1690(2014).

    [29] He Y. Sensitivity of optical mass sensor enhanced by optomechanical coupling[J]. Applied Physics Letters, 106, 121905(2015).

    [30] Chen H J, Chen C Z, Li Y et al. Coherent optical propagation and ultrahigh resolution mass sensor based on photonic molecules optomechanics[J]. Optics Communications, 382, 73-79(2017).

    [31] Ekinci K L, Yang Y T, Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems[J]. Journal of Applied Physics, 95, 2682-2689(2004).

    Tools

    Get Citation

    Copy Citation Text

    Pengjie ZHU, Huajun CHEN. All⁃optical mass sensing based on hybrid nanomechanical oscillator system[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 349

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 16, 2022

    Accepted: --

    Published Online: Jun. 24, 2024

    The Author Email: CHEN Huajun (chenphysics@126.com)

    DOI:10.3969/j.issn.1007-5461.2024.02.017

    Topics