Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1082(2024)
Development and Application on ZnS Transparent Ceramics
[2] [2] XIE Qiming, LI Yiwei, PAN Shunchen. Infrared Technol, 2012, 34 (10): 559-567.
[4] [4] FELDMANN C, JüSTEL T, RONDA C R, et al. Inorganic luminescent materials: 100 years of research and application[J]. Adv Funct Mater, 2003, 13(7): 511-516.
[5] [5] NODA D, HAGIWARA K, YAMAMOTO T, et al. Electron emission properties of ZnS-based thin-film cold cathode for field emission display[J]. Jpn J Appl Phys, 2005, 44(6R): 4108.
[6] [6] JIA D D, GOONEWARDENE A, JIA W Y, et al. Sulfide phosphors for LED white light sources[J]. MRS Online Proc Libr, 2006, 916(1): 2-6.
[7] [7] JIN X H, DONG M J, KAN Y M, et al. Fabrication of transparent AlON by gel casting and pressureless sintering[J]. J Inorg Mater, 2023, 38(2): 193.
[8] [8] OSHIMA Y, NAKAMURA A, MATSUNAGA K. Extraordinary plasticity of an inorganic semiconductor in darkness[J]. Science, 2018, 360(6390): 772-774.
[9] [9] KITOU S, OSHIMA Y, NAKAMURA A, et al. Room-temperature plastic deformation modes of cubic ZnS crystals[J]. Acta Mater, 2023, 247: 118738.
[10] [10] PANDEY D, LELE S. On the study of the f.c.c.-h.c.p. Martensitic transformation using a diffraction approach—II. H.c.p. → f.c.c. transformation[J]. Acta Metall, 1986, 34(3): 405-413.
[11] [11] ZHANG H Z, HUANG F, GILBERT B, et al. Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles[J]. J Phys Chem B, 2003, 107(47): 13051-13060.
[13] [13] LI Chaoyu. Study on TM2+: ZnS transparent ceramics for mid-infrared laser[D]. Beijing: University of Chinese Academy of Sciences, 2017.
[15] [15] CHEN Yuanzhi, ZHANG Le, HUANG Cunxin, et al. Prog Chem, 2015, 27(5): 511-521.
[17] [17] CHEN Penghui. Fabrication and properties of yttria-stabilized ZrO2(YSZ)transparent ceramics[D]. Zhenjiang: Jiangsu University, 2020.
[18] [18] PARSONS W F. Optical materials research[J]. Appl Opt, 1972, 11(1): 43-49.
[19] [19] HARRIS D C. Development of hot-pressed and chemical-vapor- deposited zinc sulfide and zinc selenide in the United States for optical windows[C]//Defense and Security Symposium. Proc SPIE 6545, Window and Dome Technologies and Materials X, Orlando, Florida, USA. 2007, 6545: 9-35.
[20] [20] MCCLOY J. International development of chemical vapor deposited zinc sulfide[C]//Defense and Security Symposium. Proc SPIE 6545, Window and Dome Technologies and Materials X, Orlando, Florida, USA. 2007, 6545: 36-47.
[22] [22] YUE Baoyi. Optical system design of dual-band common aperture compound guidance coordinator[D]. Xi'an: Xi’an Technological University, 2019.
[23] [23] VASILYEV S, MOSKALEV I, MIROV M, et al. Recent breakthroughs in solid-state mid-IR laser technology[J]. Laser Tech J, 2016, 13(4): 24-27.
[25] [25] LI Jiang, TIAN Feng, LIU Ziyu. J Synth Cryst, 2020, 49(8): 1467-1487.
[27] [27] GAN Shuowen. Study on manufacturing technology of hot pressed multispectral ZnS[D]. Tianjin University, 2013.
[28] [28] XUE L A, RAJ R. Effect of hot-pressing temperature on the optical transmission of zinc sulfide[J]. Appl Phys Lett, 1991, 58(5): 441-443.
[29] [29] CHEN P H, LI X Y, TIAN F, et al. Fabrication, microstructure, and properties of 8 mol% yttria-stabilized zirconia (8YSZ) transparent ceramics[J]. J Adv Ceram, 2022, 11(7): 1153-1162.
[30] [30] HUANG F, BANFIELD J F. Size-dependent phase transformation kinetics in nanocrystalline ZnS[J]. J Am Chem Soc, 2005, 127(12): 4523-4529.
[31] [31] HU H, ZHANG W H. Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles[J]. Opt Mater, 2006, 28(5): 536-550.
[32] [32] BECKER W G, BARD A J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions[J]. J Phys Chem, 1983, 87(24): 4888-4893.
[33] [33] WILLIAMS R, YOCOM P N, STOFKO F S. Preparation and properties of spherical zinc sulfide particles[J]. J Colloid Interface Sci, 1985, 106(2): 388-398.
[34] [34] AKINC M, CELIKKAYA A. Synthesis and hot pressing of ZnS powders[C]//SPIE Proceedings", "Window and Dome Technologies and Materials. Orlando, FL, USA. SPIE, 1989: 60-70.
[35] [35] VOILES E T, CHUMBLEY L S, HAN Y, et al. TEM examination of heart-treated nanocrystalline ZnS[J]. J Am Ceram Soc, 1994, 77(12): 3273-3276.
[37] [37] LI Yubin. J Synth Cryst, 2003, 32(4): 398-400.
[38] [38] CHLIQUE C, MERDRIGNAC-CONANEC O, HAKMEH N, et al. Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders[J]. J Am Ceram Soc, 2013, 96(10): 3070-3074.
[39] [39] DURAND G R, HAKMEH N, DORCET V, et al. New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method[J]. J Eur Ceram Soc, 2019, 39(10): 3094-3102.
[40] [40] YEO S Y, PARK C-S, HONG Y, et al. Synthesis and characterization of middle infrared transmission ZnS ceramics by heat treatment time[J]. J Sens Sci Technol, 2017, 26(5): 360-365.
[41] [41] LEE K T, CHOI B H, WOO J U, et al. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders[J]. J Eur Ceram Soc, 2018, 38(12): 4237-4244.
[42] [42] PARK C-S, YEO S Y, KWON T-H, et al. A study of middle infrared transparent properties of ZnS ceramics by the change of micro structure[J]. J Korean Inst Electr Electron Mater Eng, 2017, 30(11): 722-727.
[43] [43] CHOI B H, KIM D S, LEE K T, et al. Highly IR transparent ZnS ceramics sintered by vacuum hot press using hydrothermally produced ZnS nanopowders[J]. J Am Ceram Soc, 2020, 103(4): 2663-2673.
[44] [44] ABDI A, DAVAR F. Hot pressing sintering of zinc sulfide microsphere decorated with nanorods synthesized by the simple refluxing method[J]. Ceram Int, 2020, 46(13): 21107-21119.
[45] [45] LI Y Y, ZHANG L H, KISSLINGER K, et al. Green phosphorescence of zinc sulfide optical ceramics[J]. Opt Mater Express, 2014, 4(6): 1140.
[46] [46] LI Y Y, TAN W, WU Y Q. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials[J]. J Eur Ceram Soc, 2020, 40(5): 2130-2140.
[47] [47] HARRIS N H, DOUGHERTY T K. Method for making low cost infrared windows: US5643505[P]. 1997-07-01.
[48] [48] GAO D, STEFANIK T S. Transparent zinc sulfide processed from nanocrystalline powders[C]//SPIE Proceedings", "Window and Dome Technologies and Materials XIII. Baltimore, Maryland, USA. SPIE, 2013: 87080L.
[50] [50] GAN Shuowen, YANG Yong, LIAN Weiyan, et al. Infrared Laser Eng, 2015, 44(8): 2435-2440.
[51] [51] LI C Y, XIE T F, DAI J W, et al. Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method[J]. Ceram Int, 2018, 44(1): 747-752.
[52] [52] LI C Y, PAN Y B, KOU H M, et al. Densification behavior, phase transition, and preferred orientation of hot-pressed ZnS ceramics from precipitated nanopowders[J]. J Am Ceram Soc, 2016, 99(9): 3060-3066.
[53] [53] LIU M Y, WANG S F, WANG C H, et al. Understanding of electronic and optical properties of ZnS with high concentration of point defects induced by hot pressing process: the first-principles calculations[J]. Comput Mater Sci, 2020, 174: 109492.
[54] [54] PIERSON H O. Fundamentals of chemical vapor deposition[M]// Handbook of Chemical Vapor Deposition. Amsterdam: Elsevier, 1992: 17-50.
[55] [55] KLEIN C A, DIBENEDETTO B, KOHANE T. Chemically vapor-deposited zinc sulfide infrared windows: optical properties and physical characteristics[C]//23rd Annual Technical Symposium. Proc SPIE 0204, Physical Properties of Optical Materials, San Diego, USA. 1980, 0204: 85-94.
[56] [56] KLOCEK P, STONE L E, BOUCHER M W, et al. Semiconductor infrared optical materials[C]//1988 Technical Symposium on Optics, Electro-Optics, and Sensors. Proc SPIE 0929, Infrared Optical Materials IV, Orlando, FL, USA. 1988, 0929: 65-78.
[57] [57] WILLINGHAM C B, PAPPIS J. Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality: US4944900[P]. 1990-07-31.
[58] [58] LEWIS K L, ARTHUR G S, BANYARD S A. Hydrogen-related defects in vapour-deposited zinc sulphide[J]. J Cryst Growth, 1984, 66(1): 125-136.
[60] [60] HAN Yong, ZHENG Xiulin, LIU Zhengtang. J Inorg Mater, 1997, 12(3): 346-350.
[61] [61] ZSCHECKEL T, WISNIEWSKI W, RüSSEL C. Microstructure and texture of polycrystalline CVD-ZnS analyzed via EBSD[J]. Adv Funct Mater, 2012, 22(23): 4969-4974.
[63] [63] FU Ligang, SU Xiaoping, YU Huaizhi, et al. Chin J Rare Met, 2003, 27(6): 706-708.
[64] [64] SAVAGE J A, LEWIS K L, PITT A M, et al. The role of A CVD research reactor in studies of the growth and physical properties of zns infrared optical material[C]//28th Annual Technical Symposium. Proc SPIE 0505, Advances in Optical Materials, San Diego, USA. 1984, 0505: 47-51.
[65] [65] BISWAS P, KUMAR R S, RAMAVATH P, et al. Effect of post-CVD thermal treatments on crystallographic orientation, microstructure, mechanical and optical properties of ZnS ceramics[J]. J Alloys Compd, 2010, 496(1/2): 273-277.
[66] [66] MCCLOY J, KORENSTEIN R. The effect of metal on the formation of multispectral zinc sulfide[C]//SPIE Defense, Security, and Sensing. Proc SPIE 7302, Window and Dome Technologies and Materials XI, Orlando, Florida, USA. 2009, 7302: 207-218.
[67] [67] MCCLOY J S, KORENSTEIN R, ZELINSKI B. Effects of temperature, pressure, and metal promoter on the recrystallized structure and optical transmission of chemical vapor deposited zinc sulfide[J]. J Am Ceram Soc, 2009, 92(8): 1725-1731.
[68] [68] ZSCHECKEL T, WISNIEWSKI W, GEBHARDT A, et al. Mechanisms counteracting the growth of large grains in industrial ZnS grown by chemical vapor deposition[J]. ACS Appl Mater Interfaces, 2014, 6(1): 394-400.
[69] [69] ZSCHECKEL T, WISNIEWSKI W, GEBHARDT A, et al. Recrystallization of CVD-ZnS during thermal treatment[J]. Opt Mater Express, 2014, 4(9): 1885.
[71] [71] HAN Yong, LIU Zhengtang, ZHANG Guifeng, et al. J Northwest Polytech Univ, 1995, 13(1): 158-159.
[73] [73] HAN Yong, ZHENG Xiulin, LIU Zhengtang. Ordnance Mater Sci Eng, 1997, 20(2): 39-45.
[75] [75] HUO Chengsong, YANG Hai, FU Ligang, et al. Infrared Laser Eng, 2008, 37(4): 719-722.
[77] [77] YANG Hai, HUO Chengsong, YU Huaizhi, et al. J Appl Opt, 2008, 29(1): 57-61.
[79] [79] SONG Ruifeng, YU Huaizhi, HUO Chengsong. J Inorg Mater, 2002, 17(4): 872-876.
[81] [81] FU Ligang, HUO Chengsong, LU Niou. Infrared Laser Eng, 2005, 34(1): 31-33.
[82] [82] YU H Z, SONG R F, HUO C S, et al. Relationship between inside defects and optical properties of CVDZnS[C]//Proc SPIE 4231, Advanced Optical Manufacturing and Testing Technology 2000, 2000, 4231: 224-230.
[84] [84] FU Ligang, HUO Chengsong, ZHANG Fuchang, et al. J Synth Cryst, 2010, 39(6): 1596-1600.
[86] [86] FU Ligang, HUO Chengsong, ZHANG Fuchang, et al. Infrared Laser Eng, 2010, 39(6): 1100-1104.
[87] [87] WEI N G, YANG H, YANG D Y, et al. Recrystallization mechanism of abnormal large grains during long growth of CVD-ZnS[J]. J Cryst Growth, 2019, 517: 48-53.
[88] [88] LI D X, YANG J C, WEI N G, et al. Study on the effect of streak defects on properties of CVD ZnS[J]. Opt Mater, 2022, 134: 113132.
[90] [90] WU Shaohua, HUANG Pan, ZHAO Jinsong, et al. Infrared Laser Eng, 2021, 50(10): 180-185.
[91] [91] IWATA H, SUZUKI S, SASAKI Y. Iodine related grain growth in vapour deposited ZnS[J]. J Cryst Growth, 1992, 125(3-4): 425-430.
[92] [92] DEVYATYKH G G, GAVRISHCHUK E, YASHINA é. Effect of deposition conditions on the microstructure of CVD ZnS[J]. Inorg Mater, 1996, 32: 589-591.
[93] [93] SHCHUROV A F, GAVRISHCHUK E M, IKONNIKOV V B, et al. Effect of hot isostatic pressing on the elastic and optical properties of polycrystalline CVD ZnS[J]. Inorg Mater, 2004, 40(4): 336-339.
[94] [94] YASHINA E V, GAVRISHCHUK E M, IKONNIKOV V B. Mechanisms of polycrystalline CVD ZnS densification during hot isostatic pressing[J]. Inorg Mater, 2004, 40(9): 901-904.
[95] [95] BREDIKHIN V I, GAVRISHCHUK E M, IKONNIKOV V B, et al. Optical losses in polycrystalline CVD ZnS[J]. Inorg Mater, 2009, 45(3): 235-241.
[96] [96] RAMAVATH P, MAHENDER V, HAREESH U S, et al. Fracture behaviour of chemical vapour deposited and hot isostatically pressed zinc sulphide ceramics[J]. Mater Sci Eng A, 2011, 528(15): 5030-5035.
[97] [97] RAMAVATH P, BISWAS P, KUMAR R S, et al. Effect of sphalerite to wurtzite crystallographic transformation on microstructure, optical and mechanical properties of zinc sulphide ceramics[J]. Ceram Int, 2011, 37(3): 1039-1046.
[98] [98] WU S H, ZHAO J S, ZHAO Y J, et al. Preparation, composition, and mechanical properties of CVD polycrystalline ZnS[J]. Infrared Phys Technol, 2019, 98: 23-26.
[99] [99] SWAB J J, SHOULDERS W T. Equibiaxial flexure strength and fractography of long-wave infrared materials[J]. J Eur Ceram Soc, 2023, 43(15): 7059-7067.
[100] [100] MUNIR Z A, ANSELMI-TAMBURINI U, OHYANAGI M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method[J]. J Mater Sci, 2006, 41(3): 763-777.
[101] [101] HUANG Z Y, SHI Y, ZHANG Y T, et al. An effective strategy for preparing transparent ceramics using nanorod powders based on pressure-assisted particle fracture and rearrangement[J]. J Adv Ceram, 2022, 11(12): 1976-1987.
[102] [102] CHLIQUE C, DELAIZIR G, MERDRIGNAC-CONANEC O, et al. A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS)[J]. Opt Mater, 2011, 33(5): 706-712.
[103] [103] UNG W K, HONG J W, CHOI D H. Effect of Mo metal foil shielding on infrared transmission of spark plasma sintered ZnS ceramics[J]. J Ceram Process Res, 2021, 22(1): 86-90.
[104] [104] CHEN Y Z, ZHANG L, ZHANG J, et al. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process[J]. Opt Mater, 2015, 50: 36-39.
[105] [105] ISOGAI M, SANO M. Development of optical ceramic materials for infrared applications by optimizing sintering conditions[C]//SPIE Defense + Security. Proc SPIE 10179, Window and Dome Technologies and Materials XV, Anaheim, CA, USA. 2017, 10179: 117-126.
[106] [106] HONG J W, JUNG W K, CHOI D H. Effect of porosity and hexagonality on the infrared transmission of spark plasma sintered ZnS ceramics[J]. Ceram Int, 2020, 46(10): 16285-16290.
[107] [107] BREGIROUX D, CEDELLE J. Spark plasma sintering of nanostructured ZnS ceramics: Grain growth control and improved hardness[J]. Mater Sci Eng A, 2021, 827: 142064.
[108] [108] ZAHABI S, JAMALI H, BAKHSHI S R, et al. Comparing infrared transmission of zinc sulfide nanostructure ceramic produced via hot pressure and spark plasma sintering methods[J]. Int J Appl Ceram Technol, 2022, 19(3): 1319-1327.
[109] [109] TIMOFEEVA N, BALABANOV S, LI J A. A review of Cr2+ or Fe2+ ion-doped zinc sulfide and zinc selenide ceramics as IR laser active media[J]. Ceramics, 2023, 6(3): 1517-1530.
[110] [110] MU L C, YANG J P, WANG J P, et al. Preparation of YAG transparent ceramics by epoxy resin modified spontaneous coagulation casting[J]. J Inorg Mater, 2022, 37(9): 941.
[111] [111] PAGE R H, DELOACH L D, WILKE G D, et al. Cr/sup 2 /-doped II-VI crystals: new widely-tunable, room-temperature mid-IR lasers[C]//LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings. San Francisco, CA, USA. IEEE, 2002: 449-450.
[112] [112] DELOACH L D, PAGE R H, WILKE G D, et al. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media[J]. IEEE J Quantum Electron, 1996, 32(6): 885-895.
[113] [113] MARTYSHKIN D V, FEDOROV V V, MIROV M, et al. High average power (35 W) pulsed Fe: ZnSe laser tunable over 3.8-4.2?μm[J]. 2015: SF1F.2.
[114] [114] RUDENKOV A, KALASHNIKOV V L, SOROKIN E, et al. High peak power and energy scaling in the mid-IR chirped-pulse oscillator-amplifier laser systems[J]. Opt Express, 2023, 31(11): 17820-17835.
[115] [115] BARH A, NUSSBAUM-LAPPING A, HEIDRICH J, et al. Single-cavity dual-modelocked 2.36-μm laser[J]. Opt Express, 2023, 31(4): 6475-6483.
[117] [117] PENG Yapei, JIANG Benxue, FAN Jintai, et al. Laser Optoelectron Prog, 2015, 52(2): 7-27.
[118] [118] MIROV S, FEDOROV V, MOSKALEV I, et al. Frontiers of mid-infrared lasers based on transition metal doped II-VI semiconductors[J]. J Lumin, 2013, 133: 268-275.
[119] [119] CHEN M, CUI H M, LI W, et al. Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe[J]. J Alloys Compd, 2014, 597: 124-128.
[120] [120] GAFAROV O, FEDOROV V, MIROV S. Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing[J]. Opt Mater Express, 2017, 7(11): 25-31.
[121] [121] KONAK T, TEKAVEC M, FEDOROV V V, et al. Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II-VI semiconductors[J]. Opt Mater Express, 2013, 3(6): 777.
[122] [122] GALLIAN A, FEDOROV V V, MIROV S B, et al. Hot-pressed ceramic Cr2+: ZnSe gain-switched laser[J]. Opt Express, 2006, 14(24): 11694.
[123] [123] VASILYEV S, SMOLSKI V O, PEPPERS J M, et al. High-power middle IR and long-wave IR frequency comb generators based on mode-locked polycrystalline Cr: ZnS lasers[C]//SPIE Photonics Europe. Proc SPIE 12142, Fiber Lasers and Glass Photonics: Materials Through Applications III, Strasbourg, France. 2022, 12142: 127-131.
[124] [124] TOLSTIK N, SOROKIN E, SOROKINA I T. Kerr-lens mode-locked Cr: ZnS laser[J]. Opt Lett, 2013, 38(3): 299-301.
[125] [125] SOROKINA I T, VODOPYANOV K L. Crystalline mid-infrared lasers[M]. Berlin, 2003: 262-358.
[126] [126] SOROKIN E, BUSHUNOV A A, TOLSTIK N, et al. All-laser- microprocessed waveguide Cr: ZnS laser[J]. Opt Mater Express, 2022, 12(2): 414.
[127] [127] DEMIRBAS U, SENNAROGLU A, SOMER M. Synthesis and characterization of diffusion-doped Cr2+: ZnSe and Fe2+: ZnSe[J]. Opt Mater, 2006, 28(3): 231-240.
[128] [128] VASILYEV S, MOSKALEV I, SMOLSKI V, et al. Kerr-lens mode-locked Cr: ZnS oscillator reaches the spectral span of an optical octave[J]. Opt Express, 2021, 29(2): 2458-2465.
[129] [129] FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. Room-temperature laser on a ZnS: Fe2+polycrystal with a pulse radiation energy of 0.6 J[J]. Laser Phys Lett, 2016, 13(6): 065003.
[130] [130] LI Y Y, LIU Y, FEDOROV V V, et al. Hot-pressed chromium doped zinc sulfide infrared transparent ceramics[J]. Scr Mater, 2016, 125: 15-18.
[131] [131] WANG X Y, CHEN Z, ZHANG L H, et al. Charge state and energy transfer investigation of iron-chromium co-doped ZnS polycrystalline prepared by step-temperature diffusion for mid-infrared laser applications[J]. J Alloys Compd, 2017, 695: 3767-3771.
[133] [133] CHEN Min. Fabrication and properties of Cr2+:ZnS/ZnSe mid-infrared laser materials[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[134] [134] LI C Y, CHEN H H, IVANOV M, et al. Large-scale hydrothermal synthesis and optical properties of Cr2+: ZnS nanocrystals[J]. Ceram Int, 2018, 44(11): 13169-13175.
[135] [135] LI C Y, XIE T F, KOU H M, et al. Hot-pressing and post-HIP treatment of Fe2+: ZnS transparent ceramics from co-precipitated powders[J]. J Eur Ceram Soc, 2017, 37(5): 2253-2257.
Get Citation
Copy Citation Text
LI Jiake, HAO Haobo, YUAN Qiang, CHEN Penghui, LI Jiang. Development and Application on ZnS Transparent Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1082
Category:
Received: Aug. 22, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Jiang LI (lijiang@mail.sic.ac.cn)
CSTR:32186.14.