Electronics Optics & Control, Volume. 31, Issue 12, 48(2024)
Improved Feature Pyramid Network for Small Object Detection
[1] [1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788.
[2] [2] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 21-37.
[3] [3] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933.
[4] [4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C.: IEEE, 2015: 1440-1448.
[5] [5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] [6] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
[7] [7] YIN Q J, YANG W Z, RAN M Y, et al. FD-SSD: an improved SSD object detection algorithm based on feature fusion and dilated convolution[J]. Signal Processing: Image Communication, 2021, 98: 116402.
[8] [8] LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Jeju Island: IEEE, 2021: 181-186.
[9] [9] LIU Z M, GAO G Y, SUN L, et al. IPG-net: image pyramid guidance network for small object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle: IEEE, 2020: 1026-1027.
[12] [12] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2117-2125.
[13] [13] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 8759-8768.
[14] [14] LUO Y H, CAO X, ZHANG J T, et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia Tools and Applications, 2022, 81: 30685-30704.
[15] [15] DENG C F, WANG M M, LIU L, et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 2021, 24: 1968-1979.
[16] [16] CHEN Z D, JI H B, ZHANG Y Q, et al. High-resolution feature pyramid network for small object detection on drone view[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 34(1): 475-489.
[17] [17] WANG M, YANG W Z, WANG L J, et al. FE-YOLOv5: feature enhancement network based on YOLOv5 for small object detection[J]. Journal of Visual Communication and Image Representation, 2023, 90: 103752.
[18] [18] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2021: 3560-3569.
[19] [19] EVERINGHAM M, WINN J. The PASCAL visual object classes challenge 2012 (VOC2012) development kit[EB/OL].(2012-05-18)[2023-11-10]. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/devkit_doc.pdf.
[20] [20] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
[21] [21] CAO J X, CHEN Q, GUO J, et al. Attention-guided context feature pyramid network for object detection[R]. Los Alamos: arXiv Preprint, 2005: arXiv: 11475, 2020.
[22] [22] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988.
[23] [23] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 21-37.
[24] [24] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[R]. Los Alamos: arXiv Preprint, 2017: arXiv: 1701.06659.
[25] [25] ZHOU L, WEI H R, LI H, et al. Arbitrary-oriented object detection in remote sensing images based on polar coordinates[J]. IEEE Access, 2020, 8: 223373-223384.
[26] [26] ZHANG W H, JIAO L C, LI Y X, et al. Laplacian feature pyramid network for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[27] [27] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 7132-7141.
[28] [28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2018: 3-19.
Get Citation
Copy Citation Text
MA Zhengkai, ZHOU Linli, LIANG Xingzhu. Improved Feature Pyramid Network for Small Object Detection[J]. Electronics Optics & Control, 2024, 31(12): 48
Category:
Received: Dec. 12, 2023
Accepted: Dec. 25, 2024
Published Online: Dec. 25, 2024
The Author Email: