Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1450(2023)
Lattice Modulation, Spectral Characteristics and Emerging Applications of Transition Metal Ion-Doped Garnet Fluorescent Materials
[1] [1] SAMARAKOON C, CHOI H W, LEE S, et al. Optoelectronic system and device integration for quantum-dot light-emitting diode white lighting with computational design framework[J]. Nat Commun, 2022, 13(1): 4189.
[2] [2] ZHAO M, ZHANG Q, XIA Z. Structural engineering of Eu2+-doped silicates phosphors for LED applications[J]. Acc Mater Res, 2020, 1(2): 137-145.
[3] [3] LIU X, QIAN X, ZHENG P, et al. Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices[J]. J Adv Ceram, 2021, 10(4): 729-740.
[4] [4] GAO W, XU Z, BI Y, et al. Present development and tendency of laser display technology[J]. Strateg Study CAE, 2020(3): 85-91.
[5] [5] SONG Y H, JI E K, JEONG B W, et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting[J]. Sci Rep, 2016, 6(1): 1-7.
[8] [8] WU J, ZHUANG W, LIU R, et al. Broadband near-infrared luminescence and energy transfer of Cr3+, Ce3+ co-doped Ca2LuHf2Al3O12 phosphors[J]. J Rare Earths, 2021, 39(3): 269-276.
[9] [9] DE GUZMAN G N A, FANG M H, LIANG C H, et al. Near-infrared phosphors and their full potential: a review on practical applications and future perspectives[J]. J Lumin, 2020, 219: 116944.
[10] [10] RAJENDRAN V, FANG M H, GUZMAN G N D, et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications[J]. ACS Energy Lett, 2018, 3(11): 2679-2684.
[11] [11] ZABILIUTE A, BUTKUTE S, ZUKAUSKAS A, et al. Sol-gel synthesized far-red chromium-doped garnet phosphors for phosphor-conversion light-emitting diodes that meet the photomorphogenetic needs of plants[J]. Appl Opt, 2014, 53(5): 907-14.
[13] [13] DUAN Y, ZHAO C, LIN H, et al. Photoluminescence properties of Tb3Al5O12:Ce3+, Mn2+ phosphor ceramics for high color rendering index warm white LEDs[J]. Opt Mater, 2021, 111: 110670.
[14] [14] LING J, XU W, YANG J, et al. The effect of Lu3+ doping upon YAG:Ce phosphor ceramics for high-power white LEDs[J]. J Eur Ceram Soc, 2021, 41(12): 5967-5976.
[15] [15] XU J, YANG Y, WANG J, et al. Industry-friendly synthesis and high saturation threshold of a LuAG:Ce3+ glass composite film realizing high-brightness laser lighting[J]. J Eur Ceram Soc, 2020, 40(15): 6031-6036.
[16] [16] LIU X, ZHOU H, HU Z, et al. Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs[J]. Opt Mater, 2019, 88: 97-102.
[17] [17] MA Y, ZHANG L, ZHOU T, et al. High recorded color rendering index in single Ce, (Pr, Mn):YAG transparent ceramics for high-power white LEDs/LDs[J]. J Mater Chem C, 2020, 8(13): 4329-4337.
[18] [18] SUN B, JIANG B, ZHANG L. Samarium and manganese incorporation to improve color rendering of LuAG:Ce3+ phosphor ceramics for laser-driven lighting: a color-tunable and energy transfer study[J]. J Mater Chem C, 2021, 9(46): 16468-16476.
[19] [19] ADACHI S. Review-Mn4+ vs Cr3+: a comparative study as activator ions in red and deep red-emitting phosphors[J]. ECS J Solid State Sci Technol, 2020, 9(2): 026003.
[20] [20] HOU Z, TANG X, LUO X, et al. A green synthetic route to the highly efficient K2SiF6:Mn4+ narrow-band red phosphor for warm white light-emitting diodes[J]. J Mater Chem C, 2018, 6(11): 2741-2746.
[21] [21] MIKHAIL G B, MA C G, ALOK M S, et al. Mn4+ ions for solid state lighting[J]. Chin J Lumin, 2020, 41(9): 1011-1029.
[23] [23] MA Y, ZHANG L, ZHANG L, et al. Fabrication and optical properties of divalent Cu2+ ions incorporated Ce:YAG transparent ceramics for white LEDs[J]. Ceram Int, 2019, 45(4): 4817-4823.
[24] [24] FEOFILOV S P, KULINKIN A B, KHAIDUKOV N M. Zero-phonon line of 4T2-4A2 luminescence band of Cr3+ ions in Ca3Sc2Si3O12 garnet ceramics[J]. J Lumin, 2020, 224: 117284.
[25] [25] KIM I W, KAUR S, YADAV A, et al. Structural, luminescence and EPR properties of deep red emitting MgY2Al4SiO12:Cr3+ garnet phosphor[J]. J Lumin, 2020, 220: 116975.
[26] [26] FENG S, QIN H, WU G, et al. Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application[J]. J Eur Ceram Soc, 2017, 37(10): 3403-3409.
[27] [27] ZHANG X, ZHANG D, KAN D, et al. Crystal structure, luminescence properties and application performance of color tuning Y2Mg2Al2Si2O12:Ce3+, Mn2+ phosphors for warm white light-emitting diodes[J]. Mater Adv, 2020, 1(7): 2261-2270.
[31] [31] TANABE Y, SUGANO S. On the absorption spectra of complex ions, III the calculation of the crystalline field strength[J]. J Phys Soc Jpn, 1956, 11(8): 864-877.
[33] [33] LIU Y, ZHANG X, HAO Z, et al. Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer[J]. Chem Commun (Camb), 2011, 47(38): 10677-9.
[35] [35] CHEN D, ZHOU Y, XU W, et al. Enhanced luminescence of Mn4+:Y3Al5O12 red phosphor via impurity doping[J]. Journal of Materials Chemistry C, 2016, 4(8): 1704-1712.
[38] [38] MAO N, LIU S, SONG Z, et al. A broadband near-infrared phosphor Ca3Y2Ge3O12:Cr3+ with garnet structure[J]. J Alloys Compd, 2021, 863: 158699.
[40] [40] YI X, ZHOU S, CHEN C, et al. Fabrication of Ce:YAG, Ce, Cr:YAG and Ce:YAG/Ce, Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs[J]. Ceram Inter, 2014, 40(5): 7043-7047.
[44] [44] CAI M, FANG S, HAN T, et al. Selectivity of Mn2+ ion occupancy and energy transfer of Ce3+→Mn2+ ions in garnet solid solution[J]. J Mater Chem C, 2020, 8(41): 14507-14514.
[45] [45] PAN Z, CHEN J, WU H, et al. Red emission enhancement in Ce3+/Mn2+ co-doping suited garnet host MgY2Al4SiO12 for tunable warm white LED[J]. Opt Mater, 2017, 72: 257-264.
[46] [46] CAO Y, HAN T, YANG J, et al. Tunable‐spectrum Mn2+ doped garnet transparent ceramics for high‐color rendering laser lighting[J]. Int J Appl Ceram, 2021, 18(3): 716-723.
[47] [47] LING J, ZHOU Y, XU W, et al. Red-emitting YAG:Ce, Mn transparent ceramics for warm WLEDs application[J]. J Adv Ceram, 2020, 9(1): 45-54.
[48] [48] YANG J, HAN T, CAO Y, et al. Photoluminescent transparent ceramics with an adjustable spectrum for high-color rendering laser lighting[J]. J Mater Chem C, 2020, 8(46): 16483-16488.
[49] [49] MA Y, ZHANG L, ZHOU T, et al. Dual effect synergistically triggered Ce:(Y, Tb)3(Al, Mn)5O12 transparent ceramics enabling a high color-rendering index and excellent thermal stability for white LEDs[J]. J Eur Ceram Soc, 2021, 41(4): 2834-2846.
[52] [52] YU S, CHEN Q, LU Y, et al. Synthesis, luminescent properties and crystal stabilization of GdAG:Mn2+/Ce3+ via Y3+ doping for warm w-LED application[J]. Opt Mater, 2021: 111.110566.
[53] [53] KANG L, WANG H, LI X, et al. Thermal quenching and color tuning of Ce3+, Mn2+ co-doped Ba2LuAl3Si2O12 for high quality white-LED[J]. J Alloys Compd, 2021, 859: 157853.
[54] [54] MING Z, ZHAO J, SWART H C, et al. Luminescence and energy transfer of color-tunable Lu2MgAl4SiO12:Eu2+, Ce3+, Mn2+ phosphors[J]. J Rare Earths, 2020, 38(5): 506-513.
[55] [55] WANG Z, LI P, JINJINLIU, et al. Using multi-site substitution to design blue-exciting phosphor Mg2Y2Al2Si2O12:Mn2+ for full-spectrum plant growth LEDs[J]. J Lumin, 2021, 234: 117943.
[57] [57] WANG B, MU T, LING J, et al. Doping Effect of Bi3+ on the Properties of YAG:Ce3+, Mn2+ Phosphor Ceramics for Warm WLEDs[J]. Chin J Struct Chem, 2020, 39(3): 511-518.
[58] [58] LING J, ZHANG Y, YANG J, et al. A single‐structured LuAG:Ce, Mn phosphor ceramics with high CRI for high‐power white LEDs[J]. J Am Ceram Soc, 2022, 105(9): 5738-5750.
[59] [59] CHAIKA M, PASZKOWICZ W, STREK W, et al. Influence of Cr doping on the phase composition of Cr, Ca:YAG ceramics by solid state reaction sintering[J]. J Am Ceram Soc, 2019, 102(4): 2104-2115.
[60] [60] ZHOU T, ZHANG L, SHAO C, et al. Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics[J]. Ceram Int, 2018, 44(12): 13820-13826.
[61] [61] JIA Z, YUAN C, LIU Y, et al. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources[J]. Light Sci Appl, 2020, 9(1): 1-9.
[64] [64] MALYSA B, MEIJERINK A, JüSTEL T. Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X=Lu, Y, Gd, La)[J]. J Lumin, 2018, 202: 523-531.
[65] [65] YAO L, SHAO Q, XU X, et al. Broadband emission of single-phase Ca3Sc2Si3O12:Cr3+/Ln3+ (Ln=Nd, Yb, Ce) phosphors for novel solid-state light sources with visible to near-infrared light output[J]. Ceram Int, 2019, 45(11): 14249-14255.
[66] [66] GUZMAN G N A, RAJENDRAN V, BAO Z, et al. Multi-site cation control of ultra-broadband near-infrared phosphors for application in light-emitting diodes[J]. Inorg Chem, 2020, 59(20): 15101-15110.
[67] [67] ZHANG L, WANG D, HAO Z, et al. Cr3+ doped broadband NIR garnet phosphor with enhanced luminescence and its application in NIR spectroscopy[J]. Adv Opt Mater, 2019, 7(12): 1900185.
[68] [68] MENG X, ZHANG X, SHI X, et al. Designing a super broadband near infrared material Mg3Y2Ge3O12:Cr3+ using cation inversion for future light sources[J]. RSC Adv, 2020, 10(32): 19106-19116.
[71] [71] YAO Q, HU P, SUN P, et al. YAG:Ce3+ Transparent ceramic phosphors brighten the next-generation laser-driven lighting[J]. Adv Mater, 2020, 32(19): 1907888.
[72] [72] SUN P, HU P, LIU Y, et al. Broadband emissions from Lu2Mg2Al2Si2O12:Ce3+ plate ceramic phosphors enable a high color-rendering index for laser-driven lighting[J]. J Mater Chem C, 2020, 8(4): 1405-1412.
[73] [73] LIU Y, LIU S, SUN P, et al. Transparent ceramics enabling high luminous flux and efficacy for the next-generation high-power LED light[J]. ACS Appl Mater Inter, 2019, 11(24): 21697-21701.
[74] [74] HE S, ZHANG L, WU H, et al. Efficient super broadband NIR Ca2LuZr2Al3O12:Cr3+, Yb3+ garnet phosphor for pc‐LED light source toward NIR pectroscopy applications[J]. Adv Opt Mater, 2020, 8(6): 1901684.
[75] [75] LI R, LIU Y, YUAN C, et al. Thermally stable CaLu2Mg2Si3O12:Cr3+ phosphors for NIR LEDs[J]. Adv Opt Mater, 2021, 9(16): 2100388.
Get Citation
Copy Citation Text
YANG Congcong, ZHANG Le, KANG Jian, SUN Bingheng, SANG Pengfei, CHEN Hao. Lattice Modulation, Spectral Characteristics and Emerging Applications of Transition Metal Ion-Doped Garnet Fluorescent Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1450
Special Issue:
Received: Sep. 15, 2022
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: Congcong YANG (2020201126@jsnu.edu.cn)
CSTR:32186.14.