Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2138(2023)

Effect of CLDH on Microstructure and Properties of Slag-Based Geopolymer

ZHOU Zhengning1,*... ZHANG Zuhua1,2, DENG Yulin1, HU Jie3, YU Qijun3 and SHI Caijun1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(46)

    [2] [2] PROVIS J L, PALOMO A, SHI C J. Advances in understanding alkali-activated materials[J]. Cem Concr Res, 2015, 78: 110-125.

    [3] [3] CUNNINGHAM P R, MILLER S A. Quantitative assessment of alkali-activated materials: environmental impact and property assessments[J]. J Infrastruct Syst, 2020, 26(3): 04020021.

    [4] [4] LIU Y W, SHI C J, ZHANG Z H, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume[J]. Cem Concr Compos, 2020, 112: 103665.

    [5] [5] HU X, SHI C J, ZHANG Z H, et al. Autogenous and drying shrinkage of alkali-activated slag mortars[J]. J Am Ceram Soc, 2019, 102(8): 4963-4975.

    [8] [8] WANG S D, SCRIVENER K L. 29Si and 27Al NMR study of alkali-activated slag[J]. Cem Concr Res, 2003, 33(5): 769-774.

    [9] [9] OU Z H, FENG R P, LI F T, et al. Development of drying shrinkage model for alkali-activated slag concrete[J]. Constr Build Mater, 2022, 323: 126556.

    [10] [10] XU S T, WU C F, YUE J C, et al. Shrinkage and mechanical properties of fibre-reinforced blast furnace slag-steel slag-based geopolymer[J]. Adv Civ Eng, 2022, 2022: 1-10.

    [14] [14] KE X Y, BERNAL S A, PROVIS J L. Layered double hydroxides modify the reaction of sodium silicate-activated slag cements[J]. Green Mater, 2019, 7(2): 52-60.

    [15] [15] KE X Y, BERNAL S A, PROVIS J L. Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides[J]. Cem Concr Res, 2016, 81: 24-37.

    [16] [16] JIA Z, CHEN C, ZHOU H, et al. The characteristics and formation mechanism of the dark rim in alkali-activated slag[J]. Cement and Concrete Composites, 2020, 112: 103682.

    [17] [17] ABDEL-GAWWAD H A, MOHAMMED M S, ALOMAYRI T. Single and dual effects of magnesia and alumina nano-particles on strength and drying shrinkage of alkali activated slag[J]. Constr Build Mater, 2019, 228(C): 116827.

    [18] [18] GONG K, WHITE C E. Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes[J]. Cem Concr Res, 2016, 89: 310-319.

    [19] [19] GONG K, WHITE C E. Nanoscale chemical degradation mechanisms of sulfate attack in alkali-activated slag[J]. J Phys Chem C, 2018, 122(11): 5992-6004.

    [20] [20] GONG K, WHITE C E. Time-dependent phase quantification and local structure analysis of hydroxide-activated slag via X-ray total scattering and molecular modeling[J]. Cem Concr Res, 2022, 151: 106642.

    [21] [21] JUHS P, DAVIS T, FARROW C, et al. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions[J]. J Appl Crystallogr, 2013, 46(2): 560-566.

    [22] [22] LI C, SUN H H, LI L T. A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cem Concr Res, 2010, 40(9): 1341-1349.

    [23] [23] RICHARDSON I G. The calcium silicate hydrates[J]. Cem Concr Res, 2008, 38(2): 137-158.

    [24] [24] LOTHENBACH B, NONAT A. Calcium silicate hydrates: solid and liquid phase composition[J]. Cem Concr Res, 2015, 78: 57-70.

    [26] [26] THOMAS J J, ALLEN A J, JENNINGS H M. Density and water content of nanoscale solid C-S-H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage[J]. Cem Concr Res, 2012, 42(2): 377-383.

    [27] [27] YE H L, CARTWRIGHT C, RAJABIPOUR F, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars[J]. Cem Concr Compos, 2017, 76: 13-24.

    [28] [28] MELO NETO A A, CINCOTTO M A, REPETTE W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cem Concr Res, 2008, 38(4): 565-574.

    [30] [30] LAND G, STEPHAN D. Controlling cement hydration with nanoparticles[J]. Cem Concr Compos, 2015, 57: 64-67.

    [31] [31] ZHANG B, YAN B Q, LI Y T. Study on mechanical properties, freeze-thaw and chlorides penetration resistance of alkali activated granulated blast furnace slag-coal gangue concrete and its mechanism[J]. Constr Build Mater, 2023, 366: 130218.

    [32] [32] SHI Z G, SHI C J, WAN S, et al. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars[J]. Cem Concr Res, 2018, 113: 55-64.

    [33] [33] CHEN W W, LI B, WANG J, et al. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste[J]. Cem Concr Res, 2021, 141: 106322.

    [34] [34] HUANG D W, YUAN Q M, CHEN P, et al. Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag[J]. J Build Eng, 2022, 62: 105341.

    [35] [35] AL MAKHADMEH W, SOLIMAN A. Effect of activator nature on property development of alkali-activated slag binders[J]. J Sustain Cem Based Mater, 2021, 10(4): 240-256.

    [36] [36] SUN J W, CHEN Z H. Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag[J]. J Therm Anal Calorim, 2019, 138(1): 47-56.

    [37] [37] HE J, ZHENG W H, BAI W B, et al. Effect of reactive MgO on hydration and properties of alkali-activated slag pastes with different activators[J]. Constr Build Mater, 2021, 271: 121608.

    [39] [39] MO L W, DENG M, TANG M S, et al. MgO expansive cement and concrete in China: past, present and future[J]. Cem Concr Res, 2014, 57: 1-12.

    [40] [40] JENSEN O M, HANSEN P F. Autogenous deformation and RH-change in perspective[J]. Cem Concr Res, 2001, 31(12): 1859-1865.

    [41] [41] LIU J H, SHI C J, MA X W, et al. An overview on the effect of internal curing on shrinkage of high performance cement-based materials[J]. Constr Build Mater, 2017, 146: 702-712.

    [42] [42] DARWIN D, MINDESS S, YOUNG J. Concrete[Z]. Prentice-Hall, Upper Saddle River, NJ. 2003.

    [43] [43] ALIGIZAKI K K. Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements[M].

    [44] [44] YANG L Y, JIA Z J, ZHANG Y M, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes[J]. Cem Concr Compos, 2015, 57: 1-7.

    [45] [45] FANG YONG hao, GU YA min, KANG Q B. Effect of fly ash, MgO and curing solution on the chemical shrinkage of alkali-activated slag cement[J]. Adv Mater Res, 2010, 168-170: 2008-2012.

    [46] [46] ZHU X H, TANG D S, YANG K, et al. Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete[J]. Constr Build Mater, 2018, 175: 467-482.

    [47] [47] ZHENG W H, HE J, TONG Y P, et al. Investigation of effects of reactive MgO on autogenous and drying shrinkage of near-neutral salt activated slag cement[J]. Ceram Int, 2022, 48(4): 5518-5526.

    [48] [48] BEN HAHA M, LE SAOUT G, WINNEFELD F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cem Concr Res, 2011, 41(3): 301-310.

    [49] [49] ABDEL-GAWWAD H A, HEIKAL M, MOHAMMED M S, et al. Evaluating the impact of nano-magnesium calcite waste on the performance of cement mortar in normal and sulfate-rich media[J]. Constr Build Mater, 2019, 203: 392-400.

    [50] [50] ABDEL-GAWWAD H A, KHALIL K A. Application of thermal treatment on cement kiln dust and feldspar to create one-part geopolymer cement[J]. Constr Build Mater, 2018, 187: 231-237.

    [51] [51] ABDEL-GAWWAD H A, HEIKAL M, MOHAMMED M S, et al. Sustainable disposal of cement kiln dust in the production of cementitious materials[J]. J Clean Prod, 2019, 232: 1218-1229.

    [52] [52] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-part I: Effect of MgO[J]. Cem Concr Res, 2011, 41(9): 955-963.

    [53] [53] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-part II: effect of Al2O3[J]. Cem Concr Res, 2012, 42(1): 74-83.

    [54] [54] ABDEL-GAWWAD H A, ABO EL-ENEIN S A, HEIKAL M, et al. Synergistic effects of curing conditions and magnesium oxide addition on the physico-mechanical properties and firing resistivity of Portland cement mortar[J]. Constr Build Mater, 2018, 176: 676-689.

    [55] [55] HASSAN H S, ABDEL-GAWWAD H A, VSQUEZ-GARCA S R, et al. Cleaner production of one-part white geopolymer cement using pre-treated wood biomass ash and diatomite[J]. J Clean Prod, 2019, 209: 1420-1428.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Zhengning, ZHANG Zuhua, DENG Yulin, HU Jie, YU Qijun, SHI Caijun. Effect of CLDH on Microstructure and Properties of Slag-Based Geopolymer[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2138

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 30, 2023

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email: Zhengning ZHOU (zhouzhengning@hnu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics