Electronics Optics & Control, Volume. 31, Issue 12, 41(2024)

UAV Aerial Image Object Detection Based on Improved YOLOv5s

NING Tao1... FU Shimo2, CHANG Qing1 and WANG Yaoli1 |Show fewer author(s)
Author Affiliations
  • 1School of Information and Computer, Taiyuan University of Technology, Taiyuan 030000, China
  • 2Taiyuan Water Supply Design and Research Institute Co. Ltd., Taiyuan 030000, China
  • show less
    References(13)

    [2] [2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus: IEEE, 2014: 580-587.

    [3] [3] GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1440-1448.

    [4] [4] REN S Q, HE K M,GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

    [5] [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788.

    [6] [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multi box detector[C]//European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 21-37.

    [10] [10] ZHU X K, LU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal: IEEE, 2021: 2778-2788.

    [12] [12] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled YOLOv4: scaling cross stage partial network[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 13024-13033.

    [13] [13] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 16519-16529.

    [14] [14] YU G H, CHANG Q Y, LV W Y, et al. PP-PicoDet: a better real-time object detector on mobile devices[R]. Los Alamos: arXiv Preprint, 2021: arXiv: 2111.00902.

    [15] [15] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Los Alamos: arXiv Preprint, 2018: arXiv: 1804.02767.

    [16] [16] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/YOLOv5: v5.0-YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations[EB/OL].(2023-12-05)[2021-04-11]. https://zenodo.org/records/4679653.

    [17] [17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 7464-7475.

    [18] [18] LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[R]. Los Alamos: arXiv Preprint, 2022: arXiv: 2209.02976.

    Tools

    Get Citation

    Copy Citation Text

    NING Tao, FU Shimo, CHANG Qing, WANG Yaoli. UAV Aerial Image Object Detection Based on Improved YOLOv5s[J]. Electronics Optics & Control, 2024, 31(12): 41

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 11, 2023

    Accepted: Dec. 25, 2024

    Published Online: Dec. 25, 2024

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2024.12.007

    Topics