Chinese Journal of Lasers, Volume. 51, Issue 10, 1002320(2024)

Formation Mechanism of Stray Grain in Laser Remelting Zone of DD6 Nickel‑Based Single Crystal Superalloy

Huijun Wang1, Pengfei Guo1、*, Jianfeng Geng1, Jianjun Xu2, Xin Lin3, Jun Yu3, Hongbo Lan1, Guang Yang4, and Weidong Huang3
Author Affiliations
  • 1Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, Shandong , China
  • 2Analytical & Testing Center, Northwestern Polytechnical University, Xi’an 710072, Shaanxi , China
  • 3State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, Shaanxi , China
  • 4School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, Liaoning , China
  • show less
    Figures & Tables(15)
    Laser remelting test. (a) Laser cladding equipment; (b) molten pool diagram; (c) map of formed single-track
    Microstructures of DD6 nickel-based single crystal superalloy. (a) Morphology of the substrate collected by optical microscopy; (b) phase composition of dendritic collected by electron microscopy
    Molten-pool morphology and microstructures of each crystal region at different laser powers. (a)‒(d) 1200 W; (e)‒(h) 1500 W
    Dendrite morphology and elemental content measurement points in [010] crystal region after laser remelting. (a) 1200 W; (b) 1500 W
    EBSD of the sample after laser melting. (a) Orientation map with the laser power of 1200 W; (b) orientation map with the laser power of 1500 W; (c) {100} pole figure with the laser power of 1200 W; (d) {100} pole figure with the laser power of 1500 W
    Fusion line morphology and stray grain distribution with the laser power of 1500 W. (a) Smooth fusion line; (b) non-smooth fusion line; (c) point-scan elemental analysis spectrum at point C
    EBSD results of molten pool after remelting. (a) Grain boundary angle with the laser power of 1200 W; (b) grain boundary angle with the laser power of 1500 W; (c) misorientation angle distribution with the laser power of 1200 W; (d) misorientation angle distribution with the laser power of 1500 W
    Relationship between the dendrite growth direction and the temperature gradient
    Geometric model boundary conditions and meshing
    Temperature dependence of thermophysical parameters of DD6 alloy. (a) Density; (b) enthalpy; (c) thermal conductivity; (d) specific heat capacity
    Temperature field distributions of molten pool at different laser powers. (a) 1200 W; (b) 1500 W
    Stress field distribution maps in the molten pool at different laser powers. (a) 1200 W; (b) 1500 W
    • Table 1. Nominal-chemical composition of DD6 nickel-based single crystal superalloy

      View table

      Table 1. Nominal-chemical composition of DD6 nickel-based single crystal superalloy

      ElementMass fraction /%
      Al5.6
      C0.03
      Cr4.3
      Hf0.05
      Co9.0
      W8.0
      Mo2.0
      Ta7.5
      Re2.0
      Nb0.5
      NiBal.
    • Table 2. Laser remelting process parameters

      View table

      Table 2. Laser remelting process parameters

      NumberLaser power /WScanning speed /(mm·s-1Focusing spot diameter /mmLine energy density /(J·m-1
      A1200344×105
      B1500345×105
    • Table 3. Chemical composition of interdendritic region and dendritic stem at different laser powers

      View table

      Table 3. Chemical composition of interdendritic region and dendritic stem at different laser powers

      PositionMass fraction /%
      NiWCTaCoMoCrReNbAl
      Dendritic stem (A)54.9110.238.535.518.631.403.692.200.314.59
      Interdendritic region (B)54.567.489.228.597.281.723.421.110.885.73
      Dendritic stem (C)55.7310.278.275.418.671.413.871.380.394.60
      Interdendritic region (D)55.316.388.948.937.021.753.181.071.386.03
    Tools

    Get Citation

    Copy Citation Text

    Huijun Wang, Pengfei Guo, Jianfeng Geng, Jianjun Xu, Xin Lin, Jun Yu, Hongbo Lan, Guang Yang, Weidong Huang. Formation Mechanism of Stray Grain in Laser Remelting Zone of DD6 Nickel‑Based Single Crystal Superalloy[J]. Chinese Journal of Lasers, 2024, 51(10): 1002320

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Feb. 1, 2024

    Accepted: Apr. 2, 2024

    Published Online: Apr. 27, 2024

    The Author Email: Guo Pengfei (dr2019guopf@163.com)

    DOI:10.3788/CJL240571

    Topics