Optoelectronics Letters, Volume. 18, Issue 3, 143(2022)
Enhancing stimulated Brillouin scattering in the waveguide grating
[1] [1] KURODA K, SAWADA T, KURODA T, et al. Enhanced spontaneous emission observed at onedimensional photonic band edges[J]. Journal of the optical society of America B, 2009, 27(1):45-50.
[2] [2] WEN H, TERREL M, FAN S H, et al. Sensing with slow light in fiber Bragg gratings[J]. Sensors journal, IEEE, 2012, 12(1):156-163.
[3] [3] KRAUSS T F. Why do we need slow light?[J]. Nature photonics, 2008, 2:448-450.
[4] [4] FIGOTIN A, VITEBSKIY I. Slow light in photonic crystals[J]. Waves in random and complex media, 2006, 16(3):293-382.
[5] [5] THéVENAZ L. Slow and fast light in optical fibres[J]. Nature photonics, 2008, 2:474-481.
[6] [6] VLASOV Y A, O'BOYLE M, HAMANN H F, et al. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064):65-69.
[7] [7] SOLJA?I? M, JOANNOPOULOS J D. Enhancement of nonlinear effects using photonic crystals[J]. Nature materials, 2004, 3(4):211-219.
[8] [8] CORCORAN B, MONAT C, GRILLET C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides[J]. Nature photonics, 2009, 3:206-210.
[9] [9] MONAT C, EBNALI-HEIDARI M, GRILLET C, et al. Four-wave mixing in slow light engineered silicon photonic crystal waveguides[J]. Optics express, 2010, 18(22):22915-22927.
[10] [10] MOK J T, STERKE C D, LITTLER I, et al. Dispersionless slow light using gap solitons[J]. Nature physics, 2006, 2(11):775-780.
[11] [11] DOWLING J P, SCALORA M, BLOEMER M J, et al. The photonic band edge laser:a new approach to gain enhancement[J]. Journal of applied physics, 1994, 75(4):1896-1899.
[12] [12] QIU W, RAKICH P T, SOLJACIC M, et al. Stimulated Brillouin scattering in slow light waveguides[EB/OL]. (2012-10-02)[2021-12-08]. http://export.arxiv.org/abs/1210.0738.
[13] [13] MERKLEIN M, KABAKOVA I V, BüTTNER T F S, et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits[J]. Nature communications, 2015, 6:6396.
[14] [14] ZARIFI A, STILLER B, MERKLEIN M, et al. On-chip correlation-based Brillouin sensing:design, experiment, and simulation[J]. Journal of the optical society of America B, 2019, 36(1):146.
[15] [15] SHEN W, ZENG P, YANG Z, et al. Chalcogenide glass photonic integration for improved 2μm optical interconnection[J]. Photonics research, 2020, 8(9):7.
[16] [16] WANG K, CHENG M, SHI H, et al. Demonstration of stimulated Brillouin scattering in a silicon suspended microring with photonic-phononic waveguide[J]. Journal of lightwave technology, 2022, 40(1):121-127.
[17] [17] CHOUDHARY A, MORRISON B, ARYANFAR I, et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain[J]. Journal of lightwave technology, 2017, 35(4):846-854.
[18] [18] MIRNAZIRY S R, WOLFF C, STEEL M J, et al. Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides[J]. Optics express, 2016, 24(5): 4786-4800.
[19] [19] BOYD R W. Nonlinear optics[M]. 3rd ed. Salt Lake City:Academic Press, 2020.
[20] [20] JACOB B K. Slow light in various media:a tutorial[J]. Advances in optics and photonics, 2010, 2(3):287-318.
Get Citation
Copy Citation Text
WANG Minghai, CUI Fengtao, YANG Yang, DONG Wei. Enhancing stimulated Brillouin scattering in the waveguide grating[J]. Optoelectronics Letters, 2022, 18(3): 143
Received: Sep. 28, 2021
Accepted: Dec. 8, 2021
Published Online: Jan. 20, 2023
The Author Email: Wei DONG (dongw@jlu.edu.cn)