Infrared and Laser Engineering, Volume. 52, Issue 8, 20230403(2023)

Research progress of high-frequency and high-energy solid state lasers at 1.6 µm (invited)

Pengfei Li1,2, Fei Zhang1,2, Kai Li1,2, Chen Cao1,2, Yan Li1,2, Jiachao Zhang1,2, Bingzheng Yan1,2, Zhenxu Bai1,2, Yu Yu1,2, Zhiwei Lv1,2, and Yulei Wang1,2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    Figures & Tables(17)
    Blue line: Atmospheric transmittance; Red line: Maximum permissible exposure [2]
    Energy level jump diagram of Er3+ doped crystal
    Transmission spectral range of diamond crystals (uncoated)[44]
    Schematic diagram of the high-power diamond Raman laser[45]
    Schematic of wavelength tunable diamond Raman laser[55]
    Physical diagram of the OPO/OPA laser system[61]
    Pump spot and pulse width tunable OPO laser [62]
    Transmission rate of laser in KTA and KTP crystals at different wavelengths
    Ring cavity of KTA-OPO[65]
    Diagram of high conversion efficiency OPO optical path[66]
    Physical view of ring cavity KTA-OPO[67]
    Diagram of the wavelength-tunable OPO experimental setup[69]
    Diagram of the high-energy KTA-OPO experimental setup at 100 Hz[70]
    Schematic diagram of the experimental setup of KTA-OPO system[73]
    • Table 1. Example of obtaining a laser in the band near 1.6 µm using Er3+doped crystal as the gain medium

      View table
      View in Article

      Table 1. Example of obtaining a laser in the band near 1.6 µm using Er3+doped crystal as the gain medium

      Center wavelength/µmSingle-pulse energy/mJPulse width/nsFrequency/HzM2xM2yEnergy stabilityLinewidth/MHzYear
      1.64120100302, 2.5--2014[23]
      1.6452.9160100---2015[24]
      1.64510.12052001.4, 1.341.5%2.442018[25]
      1.64520.31102001.27, 1.30.61%4.592019[26]
      1.64528.61592001.37, 1.092.1%3.42020[27]
      1.64522.75223.12001.16, 1.150.5%2.462021[17]
      1.541.310100-0.28%-2023[28]
    • Table 2. Raman frequency shift, Raman linewidth, heat conductivity of conventional gain media

      View table
      View in Article

      Table 2. Raman frequency shift, Raman linewidth, heat conductivity of conventional gain media

      Crystal Raman materialRaman shift /cm−1Raman linewidth /cm−1Heat conductivity/W·m−1·K−1Spectral transmission /μm
      Ba(NO3)210470.41.170.35-1.8
      KGd(WO4)29015.42.60.34-5.5
      BaWO49261.63.00.26-3.7
      BaTeMo2O99215.61.260.38-5.53
      SrWO4924.233.03.1330.263-3.2
      YVO48903.05.20.4-5
    • Table 3. Relevant research progress of conventional gain dielectric Raman lasers

      View table
      View in Article

      Table 3. Relevant research progress of conventional gain dielectric Raman lasers

      Crystal Raman material Pump light wavelength/µm Raman light wavelength/µm Output power/WOutput laser frequency Light-light conversion efficiency Stokes orderLinewidth/nmYear
      Ba(NO3)21.321.560.251 Hz48%1-1995[36]
      KGd(WO4)21.351.5371.2×10−51 kHz10%1202005[37]
      BaWO41.31.5360.715 kHz44%1-2012[38]
      BaTeMo2O91.3421.5310.8325 kHz7.7%10.062013[39]
      SrWO41.4441.6641.1610 kHz4.2%1-2016[40]
      Ba(NO3)21.3191.53550 Hz-1-2016[41]
      Nd:YVO41.3421.5240.685-4.8%10.32021[42]
    Tools

    Get Citation

    Copy Citation Text

    Pengfei Li, Fei Zhang, Kai Li, Chen Cao, Yan Li, Jiachao Zhang, Bingzheng Yan, Zhenxu Bai, Yu Yu, Zhiwei Lv, Yulei Wang. Research progress of high-frequency and high-energy solid state lasers at 1.6 µm (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230403

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 8, 2023

    Accepted: --

    Published Online: Oct. 19, 2023

    The Author Email:

    DOI:10.3788/IRLA20230403

    Topics