Journal of Innovative Optical Health Sciences, Volume. 2, Issue 1, 107(2009)

EFFICIENT FITTING RANGE FOR GLUCOSE MEASUREMENT WITH OPTICAL COHERENCE TOMOGRAPHY

SHU FENG, KEHONG YUAN, and DATIAN YE*
Author Affiliations
  • Graduate School at Shenzhen & Department of Biomedical Engineering Tsinghua University, China
  • show less
    References(21)

    [1] [1] Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliato, C. A. and Fujimoto, J. G., “Optical coherence tomography,” Sci. 254, 1178–1181 (1991).

    [2] [2] Esenaliev, R. O., Larin, K. V., Larina, I. V. and Motamedi, M., “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994 (2001).

    [3] [3] Larin, K., Larina, I., Motamedi, M., Gelikonov, V., Kuranov, R. and Esenaliev, R., “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” in: A. V. Priezzhev and G. L. Cot (eds.), Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, Proc. SPIE 4263, 83– 90 (2001).

    [4] [4] Kohl, M., Cope, M., Essenpreis, M. and Bocker, D., “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994).

    [5] [5] Kirillin, M., Priezzhev, A. V., Kinnunen, M., Alarousu, E., Zhao, Z., Hast, J. and Myllyl¨a, R., “aGlucose sensing in aqueous Intralipid suspension with an optical coherence tomography system: experiment and Monte Carlo simulation,” in: G. L. Cote and A. V. Priezzhev (eds.), Optical Diagnostics and Sensing IV, Proc. SPIE 5325, 164–173, (2004).

    [6] [6] Kinnunen, M.,Myllyl¨a, R., Jokela, T. and Vainio, S., “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt. 45, 2251–2260 (2006).

    [7] [7] Larin, K. V., Ashitkov, T. V., Larina, I., Petrova, I., Eledrisi, M., Motamedi, M. and Esenaliev, R. O., “Optical coherence tomography and noninvasive blood glucose monitoring: a review,” in: V. V. Tuchin (eds.), Optical Technologies in Biophysics and Medicine V, Proc. SPIE 5474, 285–290 (2004).

    [8] [8] Larin, K. V., Motamedi, M., Ashitkov, T. V. and Esenaliev, R. O., “Specificity of non-invasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371– 1390 (2003).

    [9] [9] Larin, K. V., Motamedi, M., Eledrisi, M. S. and Esenaliev, R. O., “Noninvasive blood glucose monitoring with optical coherence tomography, a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).

    [10] [10] Schmitt, J. M., Knuttle, A. and Bonner, R. F., “Measurement of optical properties of biological tissues by low coherence interferometry,” Appl. Opt. 32, 6032–6042 (1993).

    [11] [11] Yadlowsky, M. J., Schmitt, J. M. and Bonner, R. F., “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995).

    [12] [12] Smithies, D. J., Lindmo, T., Chen, Z., Nelson, J. S. and Miller, T., “Signal attenuation and localisation in optical coherence tomography by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).

    [13] [13] Yao, G. and Wang, L. V., “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307– 2320 (1999).

    [14] [14] Pan, Y. T., Birngruber, R., Rosperich, J. and Engelhardt, R., “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).

    [15] [15] Wang, L. H., Jacques, S. J. and Zheng, L. Q., “MCML–Monte Carlo modeling of photon transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

    [16] [16] van Staveren, H. G., Moes, C. J. M., van Marle, J., Prahl, S. A. and van Gemert, M. J. C., “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507–4514 (1991).

    [17] [17] George M. H. and Marvin, R. Q., “Optical constants of water in the 200 nm to 200μm wavelength region,” Appl. Opt. 12, 555–563 (1973).

    [18] [18] Tearney, G. J., Bouma, B. E. and Fujimoto, J. G., “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).

    [19] [19] Kholodnykh, A. I., Petrova, I. Y., Larin, K. V., Motamedi, M. and Esenaliev, R. O., “Optimization of low coherence interferometry for quantitative analysis of tissue optical properties,” in: A. V. Priezzhev and G. L. Cot (eds.), Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proc. SPIE 4624, 36–46 (2002).

    [20] [20] Zaccanti, G., Bianco, S. D. and Martelli, F., “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).

    [21] [21] Cheong, W. F., Prahl, S. A. and Welch, A. J., “A review of the optical properties of biological,” IEEE J. Quantum Electronics 26, 2166–2185 (1990).

    Tools

    Get Citation

    Copy Citation Text

    SHU FENG, KEHONG YUAN, DATIAN YE. EFFICIENT FITTING RANGE FOR GLUCOSE MEASUREMENT WITH OPTICAL COHERENCE TOMOGRAPHY[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: --

    Accepted: --

    Published Online: Jan. 10, 2019

    The Author Email: YE DATIAN (yedt6386@sz.tsinghua.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics