High Power Laser and Particle Beams, Volume. 33, Issue 8, 081004(2021)
Research progress in deep learning based WFSless adaptive optics system
[1] Shorter R S. Principles of adaptive optics, 3rd edn., by Robert K. Tyson[J]. Contemporary Physics, 52, 501-502(2011).
[3] Yazdani R, Hajimahmoodzadeh M, Fallah H R. Adaptive phase aberration correction based on imperialist competitive algorithm[J]. Applied Optics, 53, 132-140(2014).
[5] Facomprez A, Beaurepaire E, Débarre D. Accuracy of correction in modal sensorless adaptive optics[J]. Optics Express, 20, 2598-2612(2012).
[6] Huang Linhai, Rao Changhui. Wavefront sensorless adaptive optics: a general model-based approach[J]. Optics Express, 19, 371-379(2011).
[8] Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 31, 939-941(2006).
[10] Yang Huizhen, Li Xinyang. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 43, 630-635(2011).
[11] Booth M J. Wavefront sensorless adaptive optics for large aberrations[J]. Optics Letters, 32, 5-7(2007).
[13] Wen Lianghua, Yang Ping, Wang Shuai, et al. A high speed model-based approach for wavefront sensorless adaptive optics systems[J]. Optics & Laser Technology, 99, 124-132(2018).
[14] Huang Linhai. Coherent beam combination using a general model-based method[J]. Chinese Physics Letters, 31, 094205(2014).
[15] Wen Lianghua, Yang Ping, Yang Kangjian, et al. Synchronous model-based approach for wavefront sensorless adaptive optics system[J]. Optics Express, 25, 20584-20597(2017).
[16] Song Hong, Fraanje R, Schitter G, et al. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system[J]. Optics Express, 18, 24070-24084(2010).
[17] Angel J R P, Wizinowich P, Lloyd-Hart M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 348, 221-224(1990).
[18] Sandler D G, Barrett T K, Palmer D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 351, 300-302(1991).
[19] Barrett T K, Sandler D G. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 32, 1720-1727(1993).
[20] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).
[21] [21] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture f computer vision[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2016: 28182826.
[22] Byrd R H, Lu Peihuang, Nocedal J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 16, 1190-1208(1995).
[23] Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).
[24] [24] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2017: 12511258.
[25] [25] Kingma D, Ba J. Adam: A method f stochastic optimization[DBOL]. arXiv preprint, arXiv: 1412.6980, 2014.
[26] Tian Qinghua, Lu Chenda, Liu Bo, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 27, 10765-10776(2019).
[27] Polo A, Haber A, Pereira S F, et al. An innovative and efficient method to control the shape of push-pull membrane deformable mirror[J]. Optics Express, 20, 27922-27932(2012).
[28] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 215829(1982).
[29] Ma Huimin, Liu Haiqiu, Qiao Yan, et al. Numerical study of adaptive optics compensation based on convolutional neural networks[J]. Optics Communications, 433, 283-289(2019).
[30] [30] Krizhevsky A, Sutskever I, Hinton G E. Image classification with deep convolutional neural wks[C]Proceedings of the 25th International Conference on Neural Infmation Processing Systems. 2012: 10971105.
[32] [32] Simonyan K, Zisserman A. Very deep convolutional wks f largescale image recognition[DBOL]. arXiv preprint, arXiv: 1409.1556, 2014.
[33] Guo Hongyang, Xu Yangjie, Li Qing, et al. Improved machine learning approach for wavefront sensing[J]. Sensors, 19, 3533(2019).
[34] Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 20, 4877(2020).
[35] [35] Nvidia Tens RT[EBOL]. (20210709). https:developer.nvidia.comtensrt.
[36] Vera E, Guzmán F, Weinberger C. Boosting the deep learning wavefront sensor for real-time applications [Invited][J]. Applied Optics, 60, B119-B124(2021).
[37] [37] Weinberger C, Guzmán F, Vera E. Improved training f the deep learning wavefront sens[C]Proceedings Volume 11448, Adaptive Optics Systems VII. 2020, 11448: 114484G.
[38] Wang Kaiqiang, Zhang Mengmeng, Tang Ju, et al. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2, 8(2021).
[39] [39] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2016: 770778.
[40] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 9, 1735-1780(1997).
[41] Xin Qi, Ju Guohao, Zhang Chunyue, et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 27, 26102-26119(2019).
[42] [42] Liu Xuewen, Mris T, Saunter C. Using long shtterm memy f wavefront prediction in adaptive optics[C]Proceeding of the 28th International Conference on Artificial Neural wks. Munich: Springer, 2019: 537542.
[43] Chen Ying. LSTM recurrent neural network prediction algorithm based on Zernike modal coefficients[J]. Optik, 203, 163796(2020).
[44] [44] Swanson R, Lamb M, Creia C, et al. Wavefront reconstruction prediction with convolutional neural wks[C]Proceedings Volume 10703, Adaptive Optics Systems VI. 2018, 10703: 107031F.
[45] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 518, 529-533(2015).
[46] Hu Ke, Xu Bing, Xu Zhenxing, et al. Self-learning control for wavefront sensorless adaptive optics system through deep reinforcement learning[J]. Optik, 178, 785-793(2019).
[47] Hu Ke, Xu Zhenxing, Yang Wei, et al. Build the structure of WFSless AO system through deep reinforcement learning[J]. IEEE Photonics Technology Letters, 30, 2033-2036(2018).
[48] [48] Konda V R, Tsitsiklis J N. Actcritic algithms[C]Proceedings of Advances in Neural Infmation Processing Systems. 2000: 10081014.
[49] Nousiainen J, Rajani C, Kasper M, et al. Adaptive optics control using model-based reinforcement learning[J]. Optics Express, 29, 15327-15344(2021).
[50] Cantalloube F, Farley O, Milli J, et al. Wind-driven halo in high-contrast images. I. Analysis of the focal-plane images of SPHERE[J]. Astronomy and Astrophysics, 638, A98(2020).
[51] [51] Lman R, Haffert S Y, Radhakrishnan V M, et al. Selfoptimizing adaptive optics control with reinfcement learning[C]Proceedings Volume 11448, Adaptive Optics Systems VII. 2020, 11448: 1144849.
[52] [52] P E H, Haffert S Y, Radhakrishnan V M, et al. High Contrast Imaging f Python (HCIPy): an opensource adaptive optics conagraph simulat[C]Proceedings Volume 10703, Adaptive Optics Systems VI. 2018, 10703: 1070342.
[53] Gendron E, Léna P. Astronomical adaptive optics. II. Experimental results of an optimized modal control[J]. Astronomy and Astrophysics Supplement Series, 111, 153-167(1995).
[54] [54] Conan R, Creia C. Objectiented Matlab adaptive optics toolbox[C]Proceedings Volume 9148, Adaptive Optics Systems IV. 2014, 9148: 91486C.
[55] [55] Rigaut F, Van Dam M. Simulating astronomical adaptive optics systems using YAO[C]Third AO4ELT Conference Adaptive Optics f Extremely Large Telescopes. 2013.
[56] Basden A G, Bharmal N A, Jenkins D, et al. The Durham Adaptive Optics Simulation Platform (DASP): Current status[J]. SoftwareX, 7, 63-69(2018).
[57] Zhu Licheng, Wen Lianghua, Yang Ping, et al. Aberration correction based on wavefront sensorless adaptive optics in membrane diffractive optical telescope[J]. Optics Communications, 451, 220-225(2019).
[58] Marx V. Microscopy: hello, adaptive optics[J]. Nature Methods, 14, 1133-1136(2017).
[59] Booth M J. Adaptive optical microscopy: the ongoing quest for a perfect image[J]. Light: Science & Applications, 3, e165(2014).
[60] Hussain S A, Kubo T, Hall N, et al. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope[J]. Journal of Microscopy(2020).
[62] Qin Zhongya, He Sicong, Yang Chao, et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo[J]. Light: Science & Applications, 9, 79(2020).
[63] Jian Yifan, Lee Sujin, Ju M J, et al. Lens-based wavefront sensorless adaptive optics swept source OCT[J]. Scientific Reports, 6, 27620(2016).
Get Citation
Copy Citation Text
Zhiguang Zhang, Huizhen Yang, Jinlong Liu, Songheng Li, Hang Su, Yuxiang Luo, Xiewen Wei. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004
Category: Laser Atmosphere Propagation?Overview
Received: Jul. 19, 2021
Accepted: --
Published Online: Sep. 3, 2021
The Author Email: Yang Huizhen (yanghz526@126.com)