Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3115(2024)
Microbial Remediation and Resource Utilization for Chromium Pollution in Sites
[5] [5] DERMATAS D, CHRYSOCHOOU M, MOON D H, et al.Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment[J]. Environ Sci Technol, 2006, 40(18):5786–5792.
[6] [6] MO X F, ZHOU J, LIN L, et al. Extraction of Cr6+ from chromite ore processing residue via hydrothermal-assisted phase transformation[J].Chin Chemical Lett, 2020, 31(7): 1956–1960.
[7] [7] DU Y G, CHRYSOCHOOU M. Chemistry and leaching behavior of chromite ore processing residue from the soda ash process[J]. Environ Eng Sci, 2018, 35(11): 1185–1193.
[8] [8] SCHROEDER D C, LEE G F. Potential transformations of chromium in natural waters[J]. Water Air Soil Pollut, 1975, 4(3): 355–365.
[9] [9] Bartlett R, James B. Behavior of chromium in soils: III. Oxidation[R].American Society of Agronomy, Crop Science Society of America,and Soil Science Society of America, 1979, 8(1): 31–35.
[10] [10] ROCK M L, JAMES B R, HELZ G R. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils[J]. Environ Sci Technol, 2001, 35(20):4054–4059.
[11] [11] PRASAD A, MISHRA S. Hexavalent chromium (VI): Environment pollutant and health hazard[J]. J Environ Res Dev, 2009, 2: 386–392.
[12] [12] LIU Z B, ZHENG J Y, LIU W Z, et al. Identification of the key host phases of Cr in fresh chromite ore processing residue (COPR)[J]. Sci Total Environ, 2020, 703: 135075.
[13] [13] PAN C, TROYER L D, CATALANO J G, et al. Dynamics of chromium(VI) removal from drinking water by iron electrocoagulation[J].Environ Sci Technol, 2016, 50(24): 13502–13510.
[16] [16] DAI R N, LIU J, YU C Y, et al. A comparative study of oxidation of Cr(VI) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite)[J]. Chemosphere, 2009, 76(4):536–541.
[17] [17] GERTH J. Unit-cell dimensions of pure and trace metal-associated goethites[J]. Geochim Cosmochim Acta, 1990, 54(2): 363–371.
[19] [19] KAUPENJOHANN M, WILCKE W. Heavy metal release from a serpentine soil using a pH-stat technique[J]. Soil Sci Soc Am J, 1995,59(4): 1027–1031.
[20] [20] LIU W Z, LI J, ZHENG J Y, et al. Different pathways for Cr(III) oxidation: Implications for Cr(VI) reoccurrence in reduced chromite ore processing residue[J]. Environ Sci Technol, 2020, 54(19):11971–11979.
[23] [23] PAN C, LIU H, CATALANO J G, et al. Rates of Cr(VI) generation from CrxFe1–x(OH)3 solids upon reaction with manganese oxide[J].Environ Sci Technol, 2017, 51(21): 12416–12423.
[24] [24] ZHANG D L, LIU X L, DING Y F, et al. Enhanced oxidation of Cr(III)-Fe(III) hydroxides by oxygen in dark and alkaline environments:Roles of Fe/Cr ratio and siderophore[J]. Environ Sci Technol, 2023,57(35): 13172–13181.
[25] [25] SU C M, LUDWIG R D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite[J]. Environ Sci Technol, 2005,39(16): 6208–6216.
[26] [26] HORI M, SHOZUGAWA K, MATSUO M. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis[J]. J Hazard Mater, 2015, 285: 140–147.
[27] [27] BOURSIQUOT S, MULLET M, EHRHARDT J J. XPS study of the reaction of chromium (VI) with mackinawite (FeS)[J]. Surf Interface Anal, 2002, 34(1): 293–297.
[29] [29] HU S W, WU Y D, LI F B, et al. Fulvic acid-mediated interfacial reactions on exposed hematite facets during dissimilatory iron reduction[J]. Langmuir, 2021, 37(20): 6139–6150.
Get Citation
Copy Citation Text
HUA Tianci, LI Yan, LI Yanzhang, LU Anhuai, DING Hongrui, WANG Changqiu, JI Xiang. Microbial Remediation and Resource Utilization for Chromium Pollution in Sites[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3115
Received: Feb. 28, 2024
Accepted: --
Published Online: Nov. 14, 2024
The Author Email: Yan LI (liyan-pku@pku.edu.cn)