Laser Journal, Volume. 45, Issue 9, 244(2024)
Research progress of clinical application based on IR-II fluorescence imaging
[1] [1] J. T. Xu, A. Gulzar, P. P. Yang, et al. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: mechanism, design and application for bioimaging[J]. Coordin Chem. Rev., (2019), 381: 104-134.
[2] [2] Feng Z, Tang T, Wu T, et al. Perfecting and extending the near-infrared imaging window[J]. Light, science & applications, 2021, 10(1): 197.
[3] [3] A. M. Smith, M. C. Mancini, S. Nie Bioimaging: second window for in vivo imaging Nat[J]. Nanotechnol., 2009, 4: 710-711.
[4] [4] F. Ding, Y. Zhan, X. Lu, Y. Sun Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging Chem[J]. Sci., 2018, 9P 4370-4380.
[5] [5] G. Hong, S. Diao, A. L. Antaris, H. Dai Carbon nanomaterials for biological imaging and nanomedicinal therapy Chem[J]. Rev., 2015, 115: 10816-10906.
[6] [6] G. Hong, J. C. Lee, J. T. Robinson, et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence Nat[J]. Med., 2012, 18: 1841-1846.
[7] [7] Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115 (11): 2491-2504.
[8] [8] Ishizuka M, Kubota K, Kita J, et al. Intraoperative observation using a fluorescence imaging instrument during hepatic resection for liver metastasis from colorectal cancer[J]. Hepato-gastroenterology, 2012, 59(113): 90-92.
[9] [9] Van Dam G M, Themelis G, Crane L M, et al. In traoperative tumor-specific fluorescence imaging in ovari an cancer by folate receptor- targeting: first in-human results[J]. Nature medicine 2011, 17(10): 1315-1319.
[10] [10] Keating J, Tchou J, Okusanya O, et al. Identification of breast cancer margins using intraoperative near-infrared imaging[J]. Journal of surgical oncology, 2016, 113(5): 508-514.
[11] [11] Zhou Q, Van Den Berg N S, Rosenthal E L, et al. EGFRtargeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial[J]. Theranostics, 2021, 11 (15): 7130-7143.
[12] [12] Anker A M, Prantl L, Strauss C, et al. Clinical Impact of DIEP Flap Perforator Characteristics-A Prospective Indocyanine Green Fluorescence Imaging Study[J]. Journal of plastic, reconstructive & aesthetic surgery: JPRAS, 2020, 73(8): 1526-1533.
[13] [13] Schpper S, Smeets R, Gosau M, et al. Intraoperative ICG-based fluorescence-angiography in head and neck reconstruction: Predictive value for impaired perfusion of free flaps[J]. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 2022, 50(4): 371-379.
[14] [14] Xue D, Wu D, Lu Z, et al. Structural and Functional NIRII Fluorescence Bioimaging in Urinary System via Clinically Approved Dye Methylene Blue[J]. Engineering, 2023, 22: 149-158.
[15] [15] N X X, Xia Q M, Zhang Y Y, et al. Aggregation-Induced Emission (AIE) Nanoparticles-Assisted NIR-II Fluorescence Imaging-Guided Diagnosis and Surgery for Inflammatory Bowel Disease (IBD)[J]. Adv Healthc Mater, 2021, 10(24): e2101043.
[16] [16] U X M, Ying Y Y, Feng Z, et al. Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window[J]. Nano Today, 2021, 39: 101235.
[17] [17] An X, Li Y, Feng Z, et al. Nanoprobes-Assisted Multichannel NIR-II Fluorescence Imaging-Guided Resection and Photothermal Ablation of Lymph Nodes[J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(9): 2003972.
[18] [18] Li Y X, Li Z S, Hu D H, et al. Targeted NIR-II emissive nanoprobes for tumor detection in mice and rabbits[J]. Chemical Communications, 2021, 57(52): 6420-6423.
[19] [19] Wu D, Liu S, Zhou J, et al. Organic Dots with Large -Conjugated Planar for Cholangiography beyond 1500 nm in Rabbits: A Non-Radioactive Strategy[J]. ACS nano, 2021, 15(3): 5011-5022.
[20] [20] Feng Z, Bai S Y, Qi J, et al. Biologically Excretable Aggregation-Induced Emission Dots for Visualizing Through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine[J]. Advanced Materials, 2021, 33(17): 2008123.
[21] [21] Hu L, Wang M. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates[J]. Theranostics, 2020, 10(9): 4265-4276.
[23] [23] N. D. Ratnavelu, A. P. Brown, S. Mallett, et al. Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses[J]. Cochrane Database Syst. Rev. 2016, 3(3): 10360.
[24] [24] F. Y. Kung, A. K. Tsang, E. L. Yu. Intraoperative frozen section analysis of ovarian tumors: a 11-year review of accuracy with clinicopathological correlation in a Hong Kong Regional hospital[J]. Int. J. Gynecol. Cancer, 2019, 29(4): 772-778.
[25] [25] G. M. Thurber, J. L. Figueiredo, R. Weissleder, Detection limits of intraoperative near infrared imaging for tumor resection[J]. J. Surg. Oncol. 2010, 102(7): 758-764.
[26] [26] T. M. Lwin, R. M. Hoffman, M. Bouvet, Unique benefits of tumor-specific nanobodies for fluorescence guided surgery[J]. Biomolecules, 2021, 11(2): 331.
[27] [27] J. Zhao, D. Zhong, S. Zhou NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy[J]. Mater. Chem. B, 2018, 6: 349-365.
[28] [28] Z. Hu, C. Fang, B. Li, et al. Tian First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows Nat[J]. Biomed. Eng., 2020, 4: 259-271.
[29] [29] A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, et al. Frangioni Image-guided cancer surgery using near-infrared fluorescence Nat[J]. Rev. Clin. Oncol., 2013, 10: 507-518.
[30] [30] Y. Urano, D. Asanuma, Y. Hama, et al. Kobayashi Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes[J]. Nat. Med., 2009, 15: 104-109.
[31] [31] Z. Hu, C. Fang, B. Li, et al. Tian, Firstin-human livertumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nat. Biomed. Eng. 2020, 4 (3): 259-271.
[32] [32] S. He, J. Song, J. Qu, Z. Cheng, Crucial breakthrough of second near-infrared biological window fuorophores: de-sign and synthesis toward multimodal imaging and theranostics[J]. Chem. Soc. Rev., 2018, 47: 4258-4278.
[33] [33] X. Shi, Z. Zhang, Z. Zhang, et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of patients[J]. IEEE Trans. Biomed. Eng., 2022, 69 (6): 1889-1900.
[34] [34] Sun Y, Ding M, Zeng X, et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery[J]. Chemical science, 2017, 8(5): 3489-3493.
[35] [35] Ntaris A L, Chen H, Cheng K, et al. A small-molecule dye for NIR-II imaging[J]. Nature materials, 2016, 15(2): 235-242.
[36] [36] I B, Zhao M, Feng L, et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging[J]. Nature communications, 2020, 11(1): 3102.
[37] [37] Xu Y, Li C, Xu R, et al. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging[J]. Chemical science, 2020, 11(31): 8157-8166.
[38] [38] Zhu W, Kang M, Wu Q, et al. Zwitterionic AIEgens: Rational Molecular Design for NIR-II Fluorescence Imaging-Guided Synergistic Phototherapy[J]. Advanced Func tional Materials, 2020, 31(3): 2007026.
[39] [39] Qi J, Sun C W, Zebibula A, et al. Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region[J]. Advanced Materials, 2018, 30(12): 1706856.
[40] [40] Li Y Y, Cai Z C, Liu S J, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels[J]. Nature communications, 2020, 11(1): 1255.
[41] [41] Hong G S, Zou Y P, Antaris A L, et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J]. Nature communications, 2014, 5: 4206.
[42] [42] Verma M, Chan Y H, Saha S, et al. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging[J]. Acs Applied Bio Materials, 2021, 4(3): 2142-2159.
[43] [43] Lian W, Tu D T, Hu P, et al. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells[J]. Nano Today, 2020, 35: 100943.
[44] [44] Zebibula A, Alifu N, Xia L, et al. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging[J]. Advanced Functional Materials, 2018, 28 (9): 1703451.
[45] [45] Zhang M, Yue J, Cui R, et al. Bright quantum dots emitting at ~1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging[J]. Proc Natl Acad Sci U S A, 2018, 115(26): 6590-6595.
[46] [46] Chen L L, Zhao L, Wang Z G, et al. Near-InfraredII Quantum Dots for In Vivo Imaging and Cancer Therapy[J]. Small (Weinheim an der Bergstrasse, Germany), 2022, 18(8): e2104567.
[47] [47] Wang R, Zhou L, Wang W, et al. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers[J]. Nature communications, 2017, 8: 14702.
[48] [48] Zhong Y, Dai H. A mini-review on rare-earth downconversion nanoparticles for NIR-II imaging of biological systems[J]. Nano research, 2020, 13(5): 1281-1294.
[49] [49] Shao W, Chen G, Kuzmin A, et al. Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window[J]. Journal of the American Chemical Society, 2016, 138(50): 16192-16195.
[50] [50] Cho S S, Salinas R, Lee J Y K. Indocyanine-Green for Fluorescence-Guided Surgery of Brain Tumors: Evidence, Techniques, and Practical Experience[J]. Frontiers in surgery, 2019, 6: 11.
[51] [51] Vuijk F A, Hilling D E, Mieog J S D, et al. Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescentguided surgery in colorectal and pancreatic cancer[J]. Journal of surgical oncology, 2018, 118(2): 315-323.
[52] [52] Carr J A, Franke D, Caram J R, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proc Natl Acad Sci U S A, 2018, 115(17): 4465-4470.
[53] [53] Nagaya T, Nakamura Y A, Choyke P L, et al. Fluorescence-Guided Surgery[J]. Front Oncol, 2017, 7: 314.
[54] [54] E. D. Moody, P. J. Viskari, C. L. Colyer, Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection[J]. Chromatogr. B Biomed. Sci. Appl., 1999, 729(11): 55-64.
[55] [55] M. Ogawa, N. Kosaka, P. L. Choyke, et al. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green[J]. Cancer Res., 2009, 69(4): 1268-1272.
[56] [56] W. de Graaf, S. H¨ ausler, M. Heger, et al. Transporters involved in the hepatic uptake of (99m) Tc-mebrofenin and indocyanine green[J]. Hepatol., 2011, 54(4): 738-745.
[57] [57] L. Huang, M. Vore, Multidrug resistance p-glycoprotein 2 is essential for the biliary excretion of indocyanine green[J]. Drug Metab. Dispos., 2001, 29(5): 634-637.
[58] [58] Zhang Z, Fang C, Zhang Y, et al. NIR-II nano fluorescence image guided hepatic carcinoma resection on cirrhotic patient[J]. Photodiagnosis Photodyn Ther, 2022, 40: 103098.
[59] [59] I. Lese, J. I. Leckenby, A. Taddeo, et al. Lymph node identification in skin malignancy using indocyanine green transcutaneously study: study protocol for a diagnostic accuracy study[J]. Medicine (Baltim.), 2019, 98 (44): e17839.
[60] [60] G. Hong, A. L. Antaris, H. Dai, Near-infrared fuorophores for biomedical imaging, Nat[J]. Biomed. Eng., 2017, 1: 0010-0020.
[61] [61] X. Guo, C. Li, X. Jia, et al. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody[J]. EBioMedicine, 2023, 89(3): 104476.
[62] [62] R. Q. Yang, K. L. Lou, P. Y. Wang, et al. Surgical navigation for malignancies guided by near-infrared-II fluorescence imaging[J]. Small Methods, 2021, 5 (3): e2001066.
[63] [63] S. Zhu, Z. Hu, R. Tian, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging[J]. Adv Mater, 2018, 7 (9): e1802546.
[64] [64] C. Cao, Z. Jin, X. Shi, et al. First clinical investigation of near-infrared window IIa/IIb fluorescence imaging for precise surgical resection of gliomas, IEEE Trans[J]. Biomed. Eng., 2022, 69(8): 2404-2413.
[65] [65] J. Lin, J. Yu, H. Wang, et al. Development of a highly thermostable immunoassay based on a nanobody-alkaline phosphatase fusion protein for carcinoembryonic antigen detection[J]. Anal. Bioanal. Chem., 2020, 412(8): 1723-1728.
[66] [66] K. S. de Valk, M. M. Deken, D. P. Schaap, et al. Dosefinding study of a CEA-targeting agent, SGM-101, for intraoperative fluorescence imaging of colorectal cancer, Ann[J]. Surg Oncol., 2021, 28(3): 1832-1844.
[67] [67] J. P. Tiernan, S. L. Perry, E. T. Verghese, et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting[J]. Br. J. Cancer, 2013, 108(3): 662-667.
Get Citation
Copy Citation Text
JIANG Yao. Research progress of clinical application based on IR-II fluorescence imaging[J]. Laser Journal, 2024, 45(9): 244
Category:
Received: Feb. 24, 2024
Accepted: Dec. 20, 2024
Published Online: Dec. 20, 2024
The Author Email: