Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1791(2024)

Power Generation via Flat-Tube Solid Oxide Fuel Cells by Direct Internal Reforming of Syngas from Underground Coal Gasification

SANG Junkang... WANG Jiping, YANG Jun, ZHU Liangzhu and GUAN Wanbing* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(33)

    [1] [1] JIANG L L, XUE D, WEI Z X, et al. Coal decarbonization: A state-of-the-art review of enhanced hydrogen production in underground coal gasification[J]. Energy Rev, 2022, 1(1): 100004.

    [2] [2] HU Z F, PENG Y F, SUN F J, et al. Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification[J]. Fuel, 2021, 293: 120462.

    [3] [3] HUANG W G, WANG Z T, DUAN T H, et al. Effect of oxygen and steam on gasification and power generation in industrial tests of underground coal gasification[J]. Fuel, 2021, 289: 119855.

    [4] [4] PERKINS G. Underground coal gasification-Part I: Field demonstrations and process performance[J]. Prog Energy Combust Sci, 2018, 67: 158-187.

    [5] [5] LI H Z, ZHA J F, GUO G L, et al. Improvement of resource recovery rate for underground coal gasification through the gasifier size management[J]. J Clean Prod, 2020, 259: 120911.

    [6] [6] ISHAQ H, DINCER I. Investigation and optimization of a new hybrid natural gas reforming system for cascaded hydrogen, ammonia and methanol synthesis[J]. Comput Chem Eng, 2021, 148: 107234.

    [7] [7] GAO Y F, NEAL L, DING D, et al. Recent advances in intensified ethylene production—a review[J]. ACS Catal, 2019, 9(9): 8592-8621.

    [8] [8] ZHANG W Y, ZHANG W C, KUANG X, et al. Numerical optimization of obstacles channel geometry for solid oxide fuel cells[J]. Int J Hydrog Energy, 2023, 48(97): 38438-38453.

    [9] [9] ZHOU Xiaoliang, QIAN Jiaqi, LIU Limin, et al. J Chin Ceram Soc, 2022, 50(7): 2015-2023.

    [10] [10] LI Yiqian, LI Jingwei, LYU Zhe. J Chin Ceram Soc, 2021, 49(1): 126-135.

    [11] [11] ZOU Zhiwen, LIU Wu, JIANG Long, et al. J Chin Ceram Soc, 2019, 47(3): 308-312.

    [12] [12] CHEN T, WANG W G, MIAO H, et al. Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas[J]. J Power Sources, 2011, 196(5): 2461-2468.

    [13] [13] LI Y X, PANG Y, TU H Y, et al. Impact of syngas from biomass gasification on solid oxide fuel cells: A review study for the energy transition[J]. Energy Convers Manag, 2021, 250: 114894.

    [14] [14] HABIBOLLAHZADE A, ROSEN M A. Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2- enriched-air gasification agents[J]. Appl Energy, 2021, 286: 116497.

    [15] [15] SANG J K, LI Y Q, YANG J, et al. Energy harvesting from algae using large-scale flat-tube solid oxide fuel cells[J]. Cell Rep Phys Sci, 2023, 4(6): 101454.

    [16] [16] BA Liming, XIONG Xingyu, YANG Zhibin, et al. Clean Coal Technol, 2023, 29(3): 8-17.

    [17] [17] J. Zhang, D. Zhang, T. Liu, et al. An efficient and durable solid oxide fuel cell integrated with coal gasification system[J]. International Journal of Hydrogen Energy, 2023, 48: 4002940036.

    [18] [18] CHEN Z P, LI M F, QIAN X Y, et al. Direct CH4-CO2 solid oxide fuel cells combined with Li-doped perovskite dry reforming catalysts for high efficiency power generation[J]. J Power Sources, 2023, 586: 233649.

    [19] [19] PATCHARAVORACHOT Y, ARPORNWICHANOP A, CHUACHUENSUK A. Electrochemical study of a planar solid oxide fuel cell: Role of support structures[J]. J Power Sources, 2008, 177(2): 254-261.

    [20] [20] XI C Q, SANG J K, WU A Q, et al. Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis[J]. Int J Hydrog Energy, 2022, 47(18): 10166-10174.

    [21] [21] SANG J K, LI Y Q, YANG J, et al. Power generation by flat-tube solid oxide fuel cells with enhanced internal reforming of methanol[J]. ACS Sustainable Chem Eng, 2022, 10(19): 6276-6288.

    [22] [22] LIU W, ZHENG J H, WANG Y D, et al. Structure evaluation of anode-supported planar solid oxide fuel cells based on single/double-sided electrolyte(s) under redox conditions[J]. Int J Appl Ceram Technol, 2020, 17(3): 1314-1321.

    [23] [23] LIU W, ZOU Z W, MIAO F X, et al. Anode-supported planar solid oxide fuel cells based on double-sided cathodes[J]. Energy Technol, 2019, 7(2): 240-244.

    [24] [24] DU Zhiguang, ZHANG Hua, JIANG Long, et al. J Chin Ceram Soc, 2020, 48(3): 423-427.

    [25] [25] SANG J K, ZHANG Y, YANG J, et al. Enhancing coking tolerance of flat-tube solid oxide fuel cells for direct power generation with nearly-dry methanol[J]. J Power Sources, 2023, 556: 232485.

    [26] [26] LYU Z W, WANG Y G, ZHANG Y L, et al. Solid oxide fuel cells fueled by simulated biogas: Comparison of anode modification by infiltration and reforming catalytic layer[J]. Chem Eng J, 2020, 393: 124755.

    [27] [27] AKBARZADEH KASANI H, CHALATURNYK R J. Coupled reservoir and geomechanical simulation for a deep underground coal gasification project[J]. J Nat Gas Sci Eng, 2017, 37: 487-501.

    [28] [28] PERKINS G, DU TOIT E, COCHRANE G, et al. Overview of underground coal gasification operations at Chinchilla, Australia[J]. Energy Sources Part A Recovery Util Environ Eff, 2016, 38(24): 3639-3646.

    [29] [29] HJALMARSSON P, MOGENSEN M. La0.99Co0.4Ni0.6O3-δ- Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells[J]. J Power Sources, 2011, 196(17): 7237-7244.

    [30] [30] SUN X, BONACCORSO A D, GRAVES C, et al. Performance characterization of solid oxide cells under high pressure[J]. Fuel Cells, 2015, 15(5): 697-702.

    [31] [31] SUBOTI? V, K?NIGSHOFER B, JURI?I? ?, et al. Detailed insight into processes of reversible solid oxide cells and stacks using DRT analysis[J]. Energy Convers Manag, 2020, 226: 113509.

    [32] [32] WANG J P, ZHAO Y M, YANG J, et al. Understanding thermal and redox cycling behaviors of flat-tube solid oxide fuel cells[J]. Int J Hydrog Energy, 2023, 48(57): 21886-21897.

    [33] [33] SANG J K, LIU S, YANG J, et al. Power generation from flat-tube solid oxide fuel cells by direct internal dry reforming of methanol: A route for simultaneous utilization of CO2 and biofuels[J]. Chem Eng J, 2023, 457: 141189.

    Tools

    Get Citation

    Copy Citation Text

    SANG Junkang, WANG Jiping, YANG Jun, ZHU Liangzhu, GUAN Wanbing. Power Generation via Flat-Tube Solid Oxide Fuel Cells by Direct Internal Reforming of Syngas from Underground Coal Gasification[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1791

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 24, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Wanbing GUAN (wbguan@nimte.ac.cn)

    DOI:10.14062/j.issn.0454-5648.20230904

    Topics