Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2296(2024)
Preparation of Gas Sensor Based on CaFe2O4/Zn2SnO4 Heterojunctions and Its Optimization Mechanism for Ethanol
[1] [1] MIRZAEI A, PARK S, SUN G J, et al. Fe2O3/Co3O4 composite nanoparticle ethanol sensor[J]. J Korean Phys Soc, 2016, 69(3): 373-380.
[2] [2] WANG J X, XIE S S, GAO Y, et al. Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures[J]. J Cryst Growth, 2004, 267(1-2): 177-183.
[3] [3] ZHU H L, YANG D R, YU G X, et al. Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties[J]. J Phys Chem B, 2006, 110(15): 7631-7634.
[4] [4] ZHANG Y, LIU Y G, WANG L, et al. A mixed-potential type NH3 sensors based on spinel Zn2SnO4 sensing electrode[J]. Sens Actuat B Chem, 2022, 367: 132154.
[5] [5] ZHOU T T, LIU X P, ZHANG R, et al. Shape control and selective decoration of Zn2SnO4 nanostructures on 1D nanowires: Boosting chemical-sensing performances[J]. Sens Actuat B Chem, 2019, 290: 210-216.
[6] [6] XIN X, ZHANG J N, CHEN C J, et al. UV-activated porous Zn2SnO4 nanofibers for selective ethanol sensing at low temperatures[J]. J Alloys Compd, 2019, 780: 228-236.
[7] [7] YAN Y, LIU J Y, LIU Q, et al. Ag-modified hexagonal nanoflakes-textured hollow octahedron Zn2SnO4 with enhanced sensing properties for triethylamine[J]. J Alloys Compd, 2020, 823: 153724.
[8] [8] THARSIKA T, HASEEB A S M A, AKBAR S A, et al. Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process[J]. J Alloys Compd, 2015, 618: 455-462.
[9] [9] YANG H M, MA S Y, JIAO H Y, et al. Synthesis of Zn2SnO4 hollow spheres by a template route for high-performance acetone gas sensor[J]. Sens Actuat B Chem, 2017, 245: 493-506.
[10] [10] CHEN C, LI G Z, LI J H, et al. One-step synthesis of 3D flower-like Zn2SnO4 hierarchical nanostructures and their gas sensing properties[J]. Ceram Int, 2015, 41(1): 1857-1862.
[11] [11] YANG X L, LI H, LI T, et al. Highly efficient ethanol gas sensor based on hierarchical SnO2/Zn2SnO4 porous spheres[J]. Sens Actuat B Chem, 2019, 282: 339-346.
[12] [12] LI X J, LI Y W, SUN G, et al. Enhanced CH4 sensitivity of porous nanosheets-assembled ZnO microflower by decoration with Zn2SnO4[J]. Sens Actuat B Chem, 2020, 304: 127374.
[13] [13] ZHOU T T, LIU X P, ZHANG R, et al. Constructing hierarchical heterostructured Mn3O4/Zn2SnO4 materials for efficient gas sensing reaction[J]. Adv Materials Inter, 2018, 5(11): 1800115.
[14] [14] KHARTON V V, TSIPIS E V, KOLOTYGIN V A, et al. Mixed conductivity and stability of CaFe2O4-δ[J]. J Electrochem Soc, 2008, 155(3): P13.
[15] [15] LING C, MIZUNO F. Phase stability of post-spinel compound AMn2O4 (A=Li, Na, or Mg) and its application as a rechargeable battery cathode[J]. Chem Mater, 2013, 25(15): 3062-3071.
[16] [16] PHILLIPS B, MUAN A. Phase equilibria in the system CaO-iron oxide in air and at 1 atm. O2 pressure[J]. J Am Ceram Soc, 1958, 41(11): 445-454.
[17] [17] ?UTKA A, KODU M, P?RNA R, et al. Orthorhombic CaFe2O4: A promising p-type gas sensor[J]. Sens Actuat B Chem, 2016, 224: 260-265.
[18] [18] GUO W W, HUANG L L, LIU X C, et al. Enhanced isoprene gas sensing performance based on p-CaFe2O4/n-ZnFe2O4 heterojunction composites[J]. Sens Actuat B Chem, 2022, 354: 131243.
[19] [19] ZHOU C G, MENG F Q, CHEN K, et al. High sensitivity and low detection limit of acetone sensor based on NiO/Zn2SnO4 p-n heterojunction octahedrons[J]. Sens Actuat B Chem, 2021, 339: 129912.
[20] [20] POSTICA V, GR?TTRUP J, ADELUNG R, et al. Multifunctional materials: A case study of the effects of metal doping on ZnO tetrapods with bismuth and tin oxides[J]. Adv Funct Materials, 2017, 27(6): 1604676.
[21] [21] LIU F J, CHEN X Y, WANG X Z, et al. Fabrication of 1D Zn2SnO4 nanowire and 2D ZnO nanosheet hybrid hierarchical structures for use in triethylamine gas sensors[J]. Sens Actuat B Chem, 2019, 291: 155-163.
[22] [22] ZHANG C, GU Y N, TENG G X, et al. Fabrication of a double-shell Ag/AgCl/G-ZnFe2O4 nanocube with enhanced light absorption and superior photocatalytic antibacterial activity[J]. ACS Appl Mater Interfaces, 2020: acsami.0c01476.
[23] [23] BEHERA A, KANDI D, MARTHA S, et al. Constructive interfacial charge carrier separation of a p-CaFe2O4@n-ZnFe2O4 heterojunction architect photocatalyst toward photodegradation of antibiotics[J]. Inorg Chem, 2019, 58(24): 16592-16608.
[24] [24] VADIVEL S, MARUTHAMANI D, HABIBI-YANGJEH A, et al. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation[J]. J Colloid Interface Sci, 2016, 480: 126-136.
[25] [25] HABIBI M H, MARDANI M. Synthesis and characterization of bi-component ZnSnO3/Zn2SnO4 (perovskite/spinel) nano-composites for photocatalytic degradation of Intracron Blue: Structural, opto-electronic and morphology study[J]. J Mol Liq, 2017, 238: 397-401.
[26] [26] ZHANG C, WU K D, LIAO H L, et al. Room temperature WO3-Bi2WO6 sensors based on hierarchical microflowers for ppb-level H2S detection[J]. Chem Eng J, 2022, 430: 132813.
[27] [27] KIM E B, AMEEN S, AKHTAR M S, et al. Iron-nickel Co-doped ZnO nanoparticles as scaffold for field effect transistor sensor: Application in electrochemical detection of hexahydropyridine chemical[J]. Sens Actuat B Chem, 2018, 275: 422-431.
[28] [28] CHOI P G, IZU N, SHIRAHATA N, et al. Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crystal face[J]. Sens Actuat B Chem, 2019, 296: 126655.
[29] [29] CHEN Y P, QIN H W, CAO Y, et al. Acetone sensing properties and mechanism of SnO2 thick-films[J]. Sensors, 2018, 18(10): 3425.
[30] [30] YOON J W, KIM J S, KIM T H, et al. A new strategy for humidity independent oxide chemiresistors: Dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters[J]. Small, 2016, 12(31): 4229-4240.
[31] [31] YIN F F, LI Y, YUE W J, et al. Sn3O4/rGO heterostructure as a material for formaldehyde gas sensor with a wide detecting range and low operating temperature[J]. Sens Actuat B Chem, 2020, 312: 127954.
[32] [32] XU X L, LIU W W, WANG S Y, et al. Design of high-sensitivity ethanol sensor based on Pr-doped SnO2 hollow beaded tubular nanostructure[J]. Vacuum, 2021, 189: 110244.
[33] [33] FENG B X, FENG Y Y, QIN J, et al. Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing[J]. Sens Actuat B Chem, 2021, 341: 129965.
[34] [34] WANG L, MA S Y, LI J P, et al. Mo-doped SnO2 nanotubes sensor with abundant oxygen vacancies for ethanol detection[J]. Sens Actuat B Chem, 2021, 347: 130642.
[35] [35] ZHANG K, LIN Z D. Highly sensitive ethanol sensor based on zinc oxide-based nanomaterials with low power consumption[J]. J Mater Sci Mater Electron, 2021, 32(13): 17395-17405.
[36] [36] ZHAO S K, SHEN Y B, HAO F L, et al. p-n junctions based on CuO-decorated ZnO nanowires for ethanol sensing application[J]. Appl Surf Sci, 2021, 538: 148140.
[37] [37] YAN W J, CHEN Y L, ZENG X M, et al. Ultrasensitive ethanol sensor based on segregated ZnO-In2O3 porous nanosheets[J]. Appl Surf Sci, 2021, 535: 147697.
[38] [38] LE HOANG DOAN T, KIM J Y, LEE J H, et al. Preparation of n-ZnO/p-Co3O4 heterojunctions from zeolitic imidazolate frameworks (ZIF-8/ZIF-67) for sensing low ethanol concentrations[J]. Sens Actuat B Chem, 2021, 348: 130684.
[39] [39] LIANG T T, KIM D S, YOON J W, et al. Rapid synthesis of rhombohedral In2O3 nanoparticles via a microwave-assisted hydrothermal pathway and their application for conductometric ethanol sensing[J]. Sens Actuat B Chem, 2021, 346: 130578.
[40] [40] OU Y C, ZHU R L, PENG J H, et al. Formation of FeVO4/ZnO n-n heterojunction with enhanced sensing properties for ethanol[J]. Appl Nanosci, 2023, 13(1): 465-474.
[41] [41] YANG X L, GAO H Y, ZHAO L P, et al. Enhanced gas sensing properties of monodisperse Zn2SnO4 octahedron functionalized by PdO nanoparticals[J]. Sens Actuat B Chem, 2018, 266: 302-310.
[42] [42] LI Q C, CHEN D, MIAO J M, et al. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application[J]. Sens Actuat B Chem, 2021, 326: 128952.
[43] [43] GAO X M, OUYANG Q Y, ZHU C L, et al. Porous MoO3/SnO2 nanoflakes with n-n junctions for sensing H2S[J]. ACS Appl Nano Mater, 2019, 2(4): 2418-2425.
[44] [44] GUO W W, ZHOU Q L, ZHANG J, et al. Hydrothermal synthesis of Bi-doped SnO2/rGO nanocomposites and the enhanced gas sensing performance to benzene[J]. Sens Actuat B Chem, 2019, 299: 126959.
[45] [45] ZHANG S S, SUN G, LI Y W, et al. Continuously improved gas-sensing performance of SnO2/Zn2SnO4 porous cubes by structure evolution and further NiO decoration[J]. Sens Actuat B Chem, 2018, 255: 2936-2943.
Get Citation
Copy Citation Text
GUO Weiwei, LUO Rundong, ZHANG Hejing, LI Xiaodan, HAN Lixiong. Preparation of Gas Sensor Based on CaFe2O4/Zn2SnO4 Heterojunctions and Its Optimization Mechanism for Ethanol[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2296
Category:
Received: Dec. 14, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Weiwei GUO (gwctbu@163.com)