International Journal of Extreme Manufacturing, Volume. 6, Issue 4, 42004(2024)

Additive manufacturing of micropatterned functional surfaces: a review

Chivate Aditya and Zhou Chi
References(259)

[1] [1] Arzt E, Quan H C, Mcmeeking R M and Hensel R 2021 Functional surface microstructures inspired by nature–From adhesion and wetting principles to sustainable new devices Prog. Mater. Sci.120 100823

[2] [2] Jin H C, Tian L M, Bing W, Zhao J and Ren L Q 2022 Bioinspired marine antifouling coatings: status, prospects, and future Prog. Mater. Sci.124 100889

[3] [3] Bandyopadhyay A, Traxel K D and Bose S 2021 Nature-inspired materials and structures using 3D printing Mater. Sci. Eng. R 145 100609

[4] [4] Damodaran V B and Murthy N S 2016 Bio-inspired strategies for designing antifouling biomaterials Biomater. Res.20 s40824–016–0064–4

[5] [5] Wang F H, Huang H, Yaniv K, Kushmaro A and Bernstein R 2022 Self-assembly of adjustable micropatterned graphene oxide and reduced graphene oxide on porous polymeric surfaces Adv. Mater. Interfaces9 2102429

[6] [6] Yan X X, Bethers B, Chen H X, Xiao S Q, Lin S, Tran B, Jiang L M and Yang Y 2021 Recent advancements in biomimetic 3D printing materials with enhanced mechanical properties Front. Mater.8 518886

[7] [7] Liu M J, Wang S T and Jiang L 2017 Nature-inspired superwettability systems Nat. Rev. Mater.2 17036

[8] [8] Zhang D J, Cheng Z J, Kang H J, Yu J X, Liu Y Y and Jiang L 2018 A smart superwetting surface with responsivity in both surface chemistry and microstructure Angew. Chem.130 3763–7

[9] [9] Nrgaard T and Dacke M 2010 Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles Front. Zool7 23

[10] [10] Dean B and Bhushan B 2010 Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review Phil. Trans. R. Soc. A 368 4775–806

[11] [11] Rostami S and Garipcan B 2022 Evolution of antibacterial and antibiofouling properties of sharkskin-patterned surfaces Surf. Innov.10 165–90

[12] [12] Cutkosky M R and Kim S 2009 Design and fabrication of multi-material structures for bioinspired robots Phil. Trans. R. Soc. A 367 1799–813

[13] [13] Xiang Y L, Huang S L, Huang T Y, Dong A, Cao D, Li H Y, Xue Y H, Lv P Y and Duan H L 2020 Superrepellency of underwater hierarchical structures on Salvinia leaf Proc. Natl Acad. Sci. USA117 2282–7

[14] [14] Liu X J, Gu H C, Ding H B, Du X, Wei M X, Chen Q and Gu Z Z 2020 3D bioinspired microstructures for switchable repellency in both air and liquid Adv. Sci.7 2000878

[15] [15] Dayan C B, Chun S, Krishna-subbaiah N, Drotlef D M, Akolpoglu M B and Sitti M 2021 3D printing of elastomeric bioinspired complex adhesive microstructures Adv. Mater.33 2103826

[16] [16] Chen Z, Chun S, Krishna-subbaiah N, Drotlef D M, Akolpoglu M B and Sitti M 2018 Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal ACS Appl. Mater. Interfaces10 29338–46

[17] [17] Kovacs G T A, Maluf N I and Petersen K E 1998 Bulk micromachining of silicon Proc. IEEE86 1536–51

[18] [18] Xie J, Zhuo Y W and Tan T W 2011 Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel Precis. Eng.35 173–82

[19] [19] Moon S D, Lee N and Kang S 2003 Fabrication of a microlens array using micro-compression molding with an electroformed mold insert J. Micromech. Microeng.13 98–103

[20] [20] Zhu T F, Fu J, Wang W, Wen F, Zhang J W, Bu R N, Ma M T and Wang H X 2017 Fabrication of diamond microlenses by chemical reflow method Opt. Express25 1185–92

[21] [21] Albero J, Nieradko L, Gorecki C, Ottevaere H, Gomez V, Thienpont H, Pietarinen J, Pivnranta B and Passilly N 2009 Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques Opt. Express17 6283–92

[22] [22] Wu M H, Park C and Whitesides G M 2002 Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography Langmuir18 9312–8

[23] [23] Gao P, Liang Z Q, Wang X B, Zhou T F, Xie J Q, Li S D and Shen W H 2018 Fabrication of a micro-lens array mold by micro ball end-milling and its hot embossing Micromachines9 96

[24] [24] Matsuo S, Juodkazis S and Misawa H 2005 Femtosecond laser microfabrication of periodic structures using a microlens array Appl. Phys. A 80 683–5

[25] [25] Hu H, Tian H M, Shao J Y, Ding Y C, Jiang C B and Liu H Z 2014 Fabrication of bifocal microlens arrays based on controlled electrohydrodynamic reflowing of pre-patterned polymer J. Micromech. Microeng.24 095027

[26] [26] Maghsoudi K, Vazirinasab E, Momen G and Jafari R 2020 Advances in the fabrication of superhydrophobic polymeric surfaces by polymer molding processes Ind. Eng. Chem. Res.59 9343–63

[27] [27] Sowade E, Polomoshnov M, Willert A and Baumann R R 2019 Toward 3D-printed electronics: inkjet-printed vertical metal wire interconnects and screen-printed batteries Adv. Eng. Mater.21 1900568

[28] [28] Xie D, Zhang H H, Shu X Y and Xiao J F 2012 Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology Opt. Express20 15186–95

[29] [29] Alamn J, Alicante R, Pe˜na J and Snchez-Somolinos C 2016 Inkjet printing of functional materials for optical and photonic applications Materials9 910

[30] [30] Kawale S S, Jang I, Farandos N M and Kelsall G H 2022 Inkjet 3D-printing of functional layers of solid oxide electrochemical reactors: a review React. Chem. Eng.7 1692–712

[31] [31] Su W J, Cook B S, Fang Y N and Tentzeris M M 2016 Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications Sci. Rep.6 35111

[32] [32] Zhang Q S, Schambach M, Schlisske S, Jin Q H, Mertens A, Rainer C, Hernandez-Sosa G, Heizmann M and Lemmer U 2022 Fabrication of microlens arrays with high quality and high fill factor by inkjet printing Adv. Opt. Mater.10 2200677

[33] [33] Luo Y, Wang L, Ding Y C, Wei H F, Hao X Q, Wang D D, Dai Y and Shi J F 2013 Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface Appl. Surf. Sci.279 36–40

[34] [34] da Costa T H and Choi J W 2020 Low-cost and customizable inkjet printing for microelectrodes fabrication Micro Nano Syst. Lett.8 2

[35] [35] Grubb P M, Subbaraman H, Park S, Akinwande D and Chen R T 2017 Inkjet printing of high performance transistors with micron order chemically set gaps Sci. Rep.7 1202

[36] [36] Yang Y J, Kim H C, Sajid M, Kim S W, Aziz S, Choi Y S and Choi K H 2018 Drop-on-demand electrohydrodynamic printing of high resolution conductive micro patterns for MEMS repairing Int. J. Precis. Eng. Manuf.19 811–9

[37] [37] Onses M S, Sutanto E, Ferreira P M, Alleyne A G and Rogers J A 2015 Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing Small11 4237–66

[38] [38] Barton K, Mishra S, Alleyne A, Ferreira P and Rogers J 2011 Control of high-resolution electrohydrodynamic jet printing Control Eng. Pract.19 1266–73

[39] [39] Mishra S, Barton K L, Alleyne A G, Ferreira P M and Rogers J A 2010 High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet J. Micromech. Microeng.20 095026

[40] [40] Han Y W, Wei C and Dong J Y 2014 Super-resolution electrohydrodynamic (EHD) 3D printing of micro-structures using phase-change inks Manuf. Lett.2 96–99

[41] [41] OPTOMEC 2014 Aerosol Jet ® printed electronics overview

[42] [42] Umrani A 2015 Fabrication of Micro Pillar Arrays via Aerosol Jet Printing (Rochester Institute of Technology)

[43] [43] Cooper C and Hughes B 2020 Aerosol jet printing of electronics: an enabling technology for wearable devices Proc. of 2020 Pan Pacific Microelectronics Symp. (Pan Pacific) (IEEE)

[44] [44] Yan C Y, Jiang P, Jia X and Wang X L 2020 3D printing of bioinspired textured surfaces with superamphiphobicity Nanoscale12 2924–38

[45] [45] Yang Q L, Zhong W Z, Xu L, Li H J, Yan Q Y, She Y B and Yang G S 2021 Recent progress of 3D-printed microneedles for transdermal drug delivery Int. J. Pharm.593 120106

[46] [46] Emami M M and Rosen D W 2018 An improved vat photopolymerization cure model demonstrates photobleaching effects Proc. 29th Annual Int. Solid Freeform Fabrication Symp.—An Additive Manufacturing Conf. (Austin, TX)

[47] [47] Emami M M and Rosen D W 2020 Modeling of light field effect in deep vat polymerization for grayscale lithography application Addit. Manuf.36 101595

[48] [48] Emami M M, Jamshidian M and Rosen D W 2021 Multiphysics modeling and experiments of grayscale photopolymerization with application to microlens fabrication J. Manuf. Sci. Eng.143 091005

[49] [49] Zhang J M, Hu P, Wang S, Tao J and Gou M L 2019 Digital light processing based three-dimensional printing for medical applications Int. J. Bioprint.6 242

[50] [50] Doraiswamy A, Jin C, Narayan R, Mageswaran P, Mente P, Modi R, Auyeung R, Chrisey D, Ovsianikov A and Chichkov B 2006 Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices Acta Biomater.2 267–75

[51] [51] Doraiswamy A, Ovsianikov A, Gittard S, Monteiro-Riviere N, Crombez R, Montalvo E, Shen W D, Chichkov B and Narayan R 2010 Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials J. Nanosci. Nanotechnol.10 6305–12

[52] [52] Burmeister F, Zeitner U D, Nolte S and Tnnermann A 2012 High numerical aperture hybrid optics for two-photon polymerization Opt. Express20 7994–8005

[53] [53] Jonuauskas L, Baravykas T, Andrijec D, Gadiauskas T and Purlys V 2019 Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand Sci. Rep.9 17533

[54] [54] Hou T X, Zheng C, Bai S, Ma Q, Bridges D, Hu A M and Duley W W 2015 Fabrication, characterization, and applications of microlenses Appl. Opt.54 7366–76

[55] [55] Sitti M 2003. High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly Proc. 2003 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM 2003) (IEEE) (https://doi.org/10.1109/tuffc.2003.1193617)

[56] [56] Xu M, Zhou Z W, Wang Z and Lu H B 2020 Self-assembled microlens array with controllable focal length formed on a selective wetting surface ACS Appl. Mater. Interfaces12 7826–32

[57] [57] Lian Z J, Hung S Y, Shen M H and Yang H 2014 Rapid fabrication of semiellipsoid microlens using thermal reflow with two different photoresists Microelectron. Eng.115 46–50

[58] [58] Di S and Du R X 2009 The controlling of microlens contour by adjusting developing time in the thermal reflow method Proc. SPIE7381 73811D

[59] [59] Roy E, Voisin B, Gravel J F, Peytavi R, Boudreau D and Veres T 2009 Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays Microelectron. Eng.86 2255–61

[60] [60] Yang H, Chao C K, Wei M K and Lin C P 2004 High fill-factor microlens array mold insert fabrication using a thermal reflow process J. Micromech. Microeng.14 1197–204

[61] [61] Zhang Z Y, Yan J W and Kuriyagawa T 2019 Manufacturing technologies toward extreme precision Int. J. Extrem. Manuf.1 022001

[62] [62] Lakshminarayanan S 2018 Micro/nano patterning on polymers using soft lithography technique Micro/Nanolithography-A Heuristic Aspect on the Enduring Technology ed J Thirumalai (IntechOpen)

[63] [63] Qian T C and Wang Y X 2010 Micro/nano-fabrication technologies for cell biology Med. Biol. Eng. Comput.48 1023–32

[64] [64] Hartensveld M 2018 Optimization of Dry and Wet GaN Etching to Form High Aspect Ratio Nanowires (Rochester Institute of Technology)

[65] [65] Samsung 2022 Learn display 47 Etching (available at: http://global.samsungdisplay.com/29533/)

[66] [66] Bibber D 2012 Secrets of success in micro molding (available at: www.ptonline.com/articles/secrets-of-success-in-micro-molding)

[67] [67] Heckele M and Schomburg W 2003 Review on micro molding of thermoplastic polymers J. Micromech. Microeng.14 R1

[68] [68] Quirk M and Serda J 2001 Semiconductor Manufacturing Technology (Prentice Hall)

[69] [69] Wu J and Gu M 2011 Microfluidic sensing: state of the art fabrication and detection techniques J. Biomed. Opt.16 080901

[70] [70] Magazine R, Van Bochove B, Borandeh S and Seppl J 2022 3D inkjet-printing of photo-crosslinkable resins for microlens fabrication Addit. Manuf.50 102534

[71] [71] Negro A, Cherbuin T and Lutolf M P 2018 3D inkjet printing of complex, cell-laden hydrogel structures Sci. Rep.8 17099

[72] [72] Rao C H, Avinash K, Varaprasad B K S V L and Goel S 2022 A review on printed electronics with digital 3D printing: fabrication techniques, materials, challenges and future opportunities J. Electron. Mater.51 2747–65

[73] [73] Gao D J and Zhou J G 2019 Designs and applications of electrohydrodynamic 3D printing Int. J. Bioprint.5 172

[74] [74] Zhang G M, Qian L, Zhao J W, Zhou H F and Lan H B 2018 High-resolution electric-field-driven jet 3D printing and applications 3D Printing ed D Cvetkovi′c (IntechOpen)

[75] [75] De Gans B J, Duineveld P C and Schubert U S 2004 Inkjet printing of polymers: state of the art and future developments Adv. Mater.16 203–13

[76] [76] Luo Y 2005 Functional Nanostructures by Ordered Porous Templates (Universitts- und Landesbibliothek Sachsen-Anhalt)

[77] [77] Krainer S, Smit C and Hirn U 2019 The effect of viscosity and surface tension on inkjet printed picoliter dots RSC Adv.9 31708–19

[78] [78] Oktavianty O, Haruyama S and Ishii Y 2022 Enhancing droplet quality of edible ink in single and multi-drop methods by optimization the waveform design of DoD inkjet printer Processes10 91

[79] [79] Tofan T, Kruggel-Emden H, Turla V and Jaseviius R 2021 Numerical modeling of the motion and interaction of a droplet of an inkjet printing process with a flat surface App. Sci.11 527

[80] [80] Cooley P W, Wallace D B and Antohe B V 2001 Applications of ink-jet printing technology to BioMEMS and microfluidic systems Proc. SPIE4560 177–188

[81] [81] Li J, Rossignol F and Macdonald J 2015 Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing Lab Chip15 2538–58

[82] [82] Kim S, Choi J H, Sohn D K and Ko H S 2022 The effect of ink supply pressure on piezoelectric inkjet Micromachines13 615

[83] [83] van der Bos A, Van Der Meulen M J, Driessen T, Van Den Berg M, Reinten H, Wijshoff H, Versluis M and Lohse D 2014 Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation Phys. Rev. Appl.1 014004

[84] [84] Xu L, Zhang W W and Nagel S R 2005 Drop splashing on a dry smooth surface Phys. Rev. Lett.94 184505

[85] [85] Furlani E P, Price B G, Hawkins H and Lopez A G 2006 Thermally induced Marangoni instability of liquid microjets with application to continuous inkjet printing Proc. NSTI Nanotechnology Conf. (Nano Science and Technology Institute) (https://doi.org/10.1103/PhysRevE.73.061919)

[86] [86] Shah M A, Lee D G, Lee B Y, Kim N W, An H and Hur S 2020 Actuating voltage waveform optimization of piezoelectric inkjet printhead for suppression of residual vibrations Micromachines11 900

[87] [87] Kwon K S 2009 Waveform design methods for piezo inkjet dispensers based on measured meniscus motion J. Microelectromech. Syst.18 1118–25

[88] [88] Bogy D B and Talke F E 1984 Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices IBM J. Res. Dev.28 314–21

[89] [89] Effects P W and Effects P A 1999 Drive Waveform Effects on Ink-Jet Device Performance (MicroFab Technologies Inc.) pp 99–103

[90] [90] Szczech J B, Megaridis C M, Gamota D R and Zhang J 2002 Fine-line conductor manufacturing using drop-on demand PZT printing technology IEEE Trans. Electron. Packag. Manuf25 26–33

[91] [91] Hu Z J, Li S J, Yang F, Lin X J, Pan S Q, Huang X F and Xu J R 2021 Formation and elimination of satellite droplets during monodisperse droplet generation by using piezoelectric method Micromachines12 921

[92] [92] Riefler N and Wriedt T 2008 Generation of monodisperse micron-sized droplets using free adjustable signals Part. Part. Syst. Charact.25 176–82

[93] [93] Dong H M, Carr W W and Morris J F 2006 An experimental study of drop-on-demand drop formation Phys. Fluids18 072102

[94] [94] Fraters A, Jeurissen R, Van Den Berg M, Reinten H, Wijshoff H, Lohse D, Versluis M and Segers T 2020 Secondary tail formation and breakup in piezoacoustic inkjet printing: femtoliter droplets captured in flight Phys. Rev. Appl.13 024075

[95] [95] Herran C L and Huang Y 2012 Alginate microsphere fabrication using bipolar wave-based drop-on-demand jetting J. Manuf. Process.14 98–106

[96] [96] Herran C L and Coutris N 2013 Drop-on-demand for aqueous solutions of sodium alginate Exp. Fluids54 1548

[97] [97] Shin P, Sung J and Lee M H 2011 Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle Microelectron. Reliab.51 797–804

[98] [98] Kim B H, Kim S I, Lee J C, Shin S J and Kim S J 2012 Dynamic characteristics of a piezoelectric driven inkjet printhead fabricated using MEMS technology Sens. Actuators A 173 244–53

[99] [99] Morita N, Hamazaki T and Ishiyama T 2016 Observation on satellite behavior by double-pulse driving for high-speed inkjet J. Imaging Sci. Technol.60 40503

[100] [100] Verkouteren R M and Verkouteren J R 2011 Inkjet metrology II: resolved effects of ejection frequency, fluidic pressure, and droplet number on reproducible drop-on-demand dispensing Langmuir27 9644–53

[101] [101] Tsai M H and Hwang W S 2008 Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse Mater. Trans.49 331–8

[102] [102] Huang J D, Segura L J, Wang T J, Zhao G L, Sun H Y and Zhou C 2020 Unsupervised learning for the droplet evolution prediction and process dynamics understanding in inkjet printing Addit. Manuf.35 101197

[103] [103] Hill T Y 2019 Understanding Drop-on-Demand Inkjet Process Characteristics in the Application of Printing Micro Solid Oxide Fuel Cells (Wright State University)

[104] [104] Lee A, Sudau K, Ahn K H, Lee S J and Willenbacher N 2012 Optimization of experimental parameters to suppress nozzle clogging in inkjet printing Ind. Eng. Chem. Res.51 13195–204

[105] [105] Derby B 2010 Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution Annu. Rev. Mater. Res.40 395–414

[106] [106] Tanner L H 1979 The spreading of silicone oil drops on horizontal surfaces J. Phys. D: Appl. Phys.12 1473–84

[107] [107] Yarin A L 2006 Drop impact dynamics: splashing, spreading, receding, bouncing Annu. Rev. Fluid Mech.38 159–92

[108] [108] Wang F J, Yang L, Wang L B, Zhu Y and Fang T G 2019 Maximum spread of droplet impacting onto solid surfaces with different wettabilities: adopting a rim–lamella shape Langmuir35 3204–14

[109] [109] Toivakka M 2003 Numerical investigation of droplet impact spreading in spray coating of paper Proceedings 2003 Advanced Coating Fundamentals Symp. Proc.

[110] [110] Li R, Ashgriz N and Chandra S 2010 Maximum spread of droplet on solid surface: low Reynolds and Weber numbers J. Fluids Eng.132 061302

[111] [111] Yan K, Li J A, Pan L J and Shi Y 2020 Inkjet printing for flexible and wearable electronics APL Mater.8 120705

[112] [112] Jang D, Kim D and Moon J 2009 Influence of fluid physical properties on ink-jet printability Langmuir25 2629–35

[113] [113] Castrejn-Pita J R, Morrison N F, Harlen O G, Martin G D and Hutchings I M 2011 Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode Phys. Rev. E 83 036306

[114] [114] Liu Y Y and Derby B 2019 Experimental study of the parameters for stable drop-on-demand inkjet performance Phys. Fluids31 032004

[115] [115] Anyfantakis M, Geng Z, Morel M, Rudiuk S and Baigl D 2015 Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle–interface interactions Langmuir31 4113–20

[116] [116] Gao M, Li L H and Song Y L 2017 Inkjet printing wearable electronic devices J. Mater. Chem. C 5 2971–93

[117] [117] Yamanaka K, Oakamoto H, Kidou H and Kudo T 1986 Peroxotungstic acid coated films for electrochromic display devices Jpn. J. Appl. Phys.25 1420

[118] [118] Cheng Z Y, Xing R B, Hou Z Y, Huang S S and Lin J 2010 Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing J. Phys. Chem. C 114 9883–8

[119] [119] Yuan W, Li L H, Lee W B and Chan C Y 2018 Fabrication of microlens array and its application: a review Chin. J. Mech. Eng.31 16

[120] [120] MacFarlane D L, Narayan V, Tatum J A, Cox W R, Chen T and Hayes D J 1994 Microjet fabrication of microlens arrays IEEE Photonics Technol. Lett.6 1112–4

[121] [121] Ishii Y, Koike S, Arai Y and Ando Y 2000 Ink-jet fabrication of polymer microlens for optical-I/O chip packaging Jpn. J. Appl. Phys.39 1490

[122] [122] Voigt A, Ostrzinski U, Pfeiffer K, Kim J Y, Fakhfouri V, Brugger J and Gruetzner G 2011 New inks for the direct drop-on-demand fabrication of polymer lenses Microelectron. Eng.88 2174–9

[123] [123] Biehl S, Danzebrink R, Oliveira P and Aegerter M A 1998 Refractive microlens fabrication by ink-jet process J. Sol-Gel Sci. Technol.13 177–82

[124] [124] Parry E, Bolis S, Castrejn-Pita A, Elston S J and Morris S M 2017 Drop-on-demand inkjet printing of liquid crystals and the fabrication of tuneable microlens arrays European Conf. on Liquid Crystals 2017 (Moscow, Russia)

[125] [125] Parry E, Bolis S, Elston S J, Castrejn-Pita A A and Morris S M 2018 Drop-on-demand inkjet printing of thermally tunable liquid crystal microlenses Adv. Eng. Mater.20 1700774

[126] [126] Kamal W, Lin J D, Elston S J, Ali T, Castrejn-Pita A A and Morris S M 2020 Electrically tunable printed bifocal liquid crystal microlens arrays Adv. Mater. Interfaces7 2000578

[127] [127] Sanchez E A, Waldmann M and Arnold C B 2011 Chalcogenide glass microlenses by inkjet printing Appl. Opt.50 1974–8

[128] [128] Fakhfouri V, Cantale N, Mermoud G, Kim J Y, Boiko D, Charbon E, Martinoli A and Brugger J 2008 Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses Proc. IEEE 21st Int. Conf. on Micro Electro Mechanical Systems (IEEE)

[129] [129] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R and Witten T A 1997 Capillary flow as the cause of ring stains from dried liquid drops Nature389 827–9

[130] [130] Xia Y J and Friend R H 2007 Nonlithographic patterning through inkjet printing via holes Appl. Phys. Lett.90 253513

[131] [131] Chen F C, Lu J P and Huang W K 2009 Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays IEEE Photonics Technol. Lett.21 648–50

[132] [132] Alamn J, Mara Lpez-Villuendas A, Lpez-Valdeolivas M, Arroyo M P, Andrs N and Snchez-Somolinos C 2020 Facile fabrication of microlenses with controlled geometrical characteristics by inkjet printing on nanostructured surfaces prepared by combustion chemical vapour deposition Appl. Surf. Sci.510 145422

[133] [133] Wang D Y, Liu Z Y, Wang H Z, Li M X, Guo L J and Zhang C 2023 Structural color generation: from layered thin films to optical metasurfaces Nanophotonics12 1019–81

[134] [134] Cox W R, Chen T, Ussery D, Hayes D J, Tatum J A and Macfarlane D L 1996 Microjetted lenslet triplet fibers Opt. Commun.123 492–6

[135] [135] Tien C H, Hung C H and Yu T H 2009 Microlens arrays by direct-writing inkjet print for LCD backlighting applications J. Disp. Technol.5 147–51

[136] [136] Kim J Y, Brauer N B, Fakhfouri V, Boiko D L, Charbon E, Grutzner G and Brugger J 2011 Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique Opt. Mater. Express1 259–69

[137] [137] Jacot-Descombes L, Cadarso V J, Schleunitz A, Grtzner S, Klein J J, Brugger J, Schift H and Grtzner G 2015 Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties Opt. Express23 25365–76

[138] [138] Li J, Wang W J, Mei X S, Hou D X, Pan A F, Liu B and Cui J L 2020 Fabrication of artificial compound eye with controllable field of view and improved imaging ACS Appl. Mater. Interfaces12 8870–8

[139] [139] Goodling A E, Nagelberg S, Kolle M and Zarzar L D 2020 Tunable and responsive structural color from polymeric microstructured surfaces enabled by interference of totally internally reflected light ACS Mater. Lett.2 754–63

[140] [140] Li L K et al 2021 Facile full-color printing with a single transparent ink Sci. Adv.7 eabh1992

[141] [141] Phillippi J A, Miller E, Weiss L, Huard J, Waggoner A and Campbell P 2008 Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations Stem Cells26 127–34

[142] [142] Turcu F, Tratsk-Nitz K, Thanos S, Schuhmann W and Heiduschka P 2003 Ink-jet printing for micropattern generation of laminin for neuronal adhesion J. Neurosci. Methods131 141–8

[143] [143] Roth E A, Xu T, Das M, Gregory C, Hickman J J and Boland T 2004 Inkjet printing for high-throughput cell patterning Biomaterials25 3707–15

[144] [144] Liberski A R, Delaney J T Jr and Schubert U S 2011 ‘One cell− one well’: a new approach to inkjet printing single cell microarrays ACS Comb. Sci.13 190–5

[145] [145] Yusof A, Keegan H, Spillane C D, Sheils O M, Martin C M, O'leary J J, Zengerle R and Koltay P 2011 Inkjet-like printing of single-cells Lab Chip11 2447–54

[146] [146] Fujita S, Onuki-Nagasaki R, Fukuda J, Enomoto J, Yamaguchi S and Miyake M 2013 Development of super-dense transfected cell microarrays generated by piezoelectric inkjet printing Lab Chip13 77–80

[147] [147] Fujie T, Desii A, Ventrelli L, Mazzolai B and Mattoli V 2012 Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment Biomed. Microdev.14 1069–76

[148] [148] Sun W Z, Taylor C S, Zhang Y, Gregory D A, Tomeh M A, Haycock J W, Smith P J, Wang F, Xia Q Y and Zhao X B 2021 Cell guidance on peptide micropatterned silk fibroin scaffolds J. Colloid Interface Sci.603 380–90

[149] [149] Gantumur E, Kimura M, Taya M, Horie M, Nakamura M and Sakai S 2019 Inkjet micropatterning through horseradish peroxidase-mediated hydrogelation for controlled cell immobilization and microtissue fabrication Biofabrication12 011001

[150] [150] Martinez-Rivas A, Gonzlez-Quijano G, Proa-Coronado S, Sverac C and Dague E 2017 Methods of micropatterning and manipulation of cells for biomedical applications Micromachines8 347

[151] [151] Kim J D, Choi J S, Kim B S, Chan Choi Y and Cho Y W 2010 Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates Polymer51 2147–54

[152] [152] Matsusaki M, Sakaue K, Kadowaki K and Akashi M 2013 Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing Adv. Healthcare Mater.2 534–9

[153] [153] Sun Y N, Zhou X G and Yu Y D 2014 A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing Lab Chip14 3603–10

[154] [154] Sun Y N, Song W H, Sun X H and Zhang S S 2018 Inkjet-printing patterned chip on sticky superhydrophobic surface for high-efficiency single-cell array trapping and real-time observation of cellular apoptosis ACS Appl. Mater. Interfaces10 31054–60

[155] [155] Park J A, Yoon S, Kwon J, Now H, Kim Y K, Kim W J, Yoo J Y and Jung S 2017 Freeform micropatterning of living cells into cell culture medium using direct inkjet printing Sci. Rep.7 14610

[156] [156] Bao B, Yoon S, Kwon J, Now H, Kim Y K, Kim W J, Yoo J Y and Jung S 2015 Fabrication of patterned concave microstructures by inkjet imprinting Adv. Funct. Mater.25 3286–94

[157] [157] Carr A, Gastel J C and Shanahan M E R 1996 Viscoelastic effects in the spreading of liquids Nature379 432–4

[158] [158] Park S J, Weon B M, Lee J S, Lee J, Kim J and Je J H 2014 Visualization of asymmetric wetting ridges on soft solids with x-ray microscopy Nat. Commun.5 4369

[159] [159] Chung C, Shih K, R T, Chang C K, Lai C W and Wu B H 2011 Design and experiments of a short-mixing-length baffled microreactor and its application to microfluidic synthesis of nanoparticles Chem. Eng. J.168 790–8

[160] [160] Ban M, Kogi Y and Hirose T 2019 Fabrication of arrayed microwells with wrinkle microstructure by ink-jet and diamond-like carbon thin film deposition process Mater. Sci. Eng.249 114422

[161] [161] Scoutaris N, Alexander M R, Gellert P R and Roberts C J 2011 Inkjet printing as a novel medicine formulation technique J. Control Release156 179–85

[162] [162] Daly R, Harrington T S, Martin G D and Hutchings I M 2015 Inkjet printing for pharmaceutics–a review of research and manufacturing Int. J. Pharm.494 554–67

[163] [163] Maleki H and Bertola V 2020 Recent advances and prospects of inkjet printing in heterogeneous catalysis Catal. Sci. Technol.10 3140–59

[164] [164] Uddin M J, Scoutaris N, Economidou S N, Giraud C, Chowdhry B Z, Donnelly R F and Douroumis D 2020 3D printed microneedles for anticancer therapy of skin tumours Mater. Sci. Eng. C 107 110248

[165] [165] Marizza P, Keller S S and Boisen A 2013 Inkjet printing as a technique for filling of micro-wells with biocompatible polymers Microelectron. Eng.111 391–5

[166] [166] Jacot-Descombes L, Gullo M R, Cadarso V J and Brugger J 2012 Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing J. Micromech. Microeng.22 074012

[167] [167] Wang L, Luo Y, Liu Z Z, Feng X M and Lu B H 2018 Fabrication of microlens array with controllable high NA and tailored optical characteristics using confined ink-jetting Appl. Surf. Sci.442 417–22

[168] [168] Yuan Y, Xu M, Wang X H, Lu H B and Qiu L Z 2021 Polyvinyl alcohol microlens array obtained by solvent evaporation from a confined droplet array Appl. Opt.60 10914–9

[169] [169] Lauria I, Kramer M, Schrder T, Kant S, Hausmann A, Bke F, Leube R, Telle R and Fischer H 2016 Inkjet printed periodical micropatterns made of inert alumina ceramics induce contact guidance and stimulate osteogenic differentiation of mesenchymal stromal cells Acta Biomater.44 85–96

[170] [170] Bietsch A, Zhang J Y, Hegner M, Lang H P and Gerber C 2004 Rapid functionalization of cantilever array sensors by inkjet printing Nanotechnology15 873–80

[171] [171] Al-Milaji K N, Secondo R R, Ng T N, Kinsey N and Zhao H 2018 Interfacial self-assembly of colloidal nanoparticles in dual-droplet inkjet printing Adv. Mater. Interfaces5 1701561

[172] [172] Wen L, Weaver J C and Lauder G V 2014 Biomimetic shark skin: design, fabrication and hydrodynamic function J. Exp. Biol.217 1656–66

[173] [173] Wen L, Weaver J C, Thornycroft P J M and Lauder G V 2015 Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing Bioinsp. Biomim.10 066010

[174] [174] Zhang L B, Wu J B, Hedhili M N, Yang X L and Wang P 2015 Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces J. Mater. Chem. A 3 2844–52

[175] [175] Wu L, Dong Z C, Kuang M X, Li Y N, Li F Y, Jiang L and Song Y L 2015 Printing patterned fine 3D structures by manipulating the three phase contact line Adv. Funct. Mater.25 2237–42

[176] [176] Nishimoto S et al 2009 TiO2-based superhydrophobic–superhydrophilic patterns: fabrication via an ink-jet technique and application in offset printing Appl. Surf. Sci.255 6221–5

[177] [177] Jiang J K, Bao B, Li M Z, Sun J Z, Zhang C, Li Y, Li F Y, Yao X and Song Y L 2016 Fabrication of transparent multilayer circuits by inkjet printing Adv. Mater.28 1420–6

[178] [178] Sun J Z, Bao B, Jiang J K, He M, Zhang X Y and Song Y L 2016 Facile fabrication of a superhydrophilic–superhydrophobic patterned surface by inkjet printing a sacrificial layer on a superhydrophilic surface RSC Adv.6 31470–5

[179] [179] Lee C, Kang B J and Oh J H 2016 High-resolution conductive patterns fabricated by inkjet printing and spin coating on wettability-controlled surfaces Thin Solid Films616 238–46

[180] [180] Hou J, Li M Z and Song Y L 2018 Patterned colloidal photonic crystals Angew. Chem., Int. Ed.57 2544–53

[181] [181] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature412 697–8

[182] [182] Zhang X, Jiang X N and Sun C 1999 Micro-stereolithography of polymeric and ceramic microstructures Sens. Actuators A 77 149–56

[183] [183] Sun C, Fang N, Wu D M and Zhang X 2005 Projection micro-stereolithography using digital micro-mirror dynamic mask Sens. Actuators A 121 113–20

[184] [184] Zheng X Y, Deotte J, Alonso M P, Farquar G R, Weisgraber T H, Gemberling S, Lee H, Fang N and Spadaccini C M 2012 Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system Rev. Sci. Instrum.83 125001

[185] [185] Han D, Yang C, Fang N X and Lee H 2019 Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control Addit. Manuf.27 606–15

[186] [186] Kowsari K, Akbari S, Wang D, Fang N X and Ge Q 2018 High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing 3D Print Addit. Manuf.5 185–93

[187] [187] Zhao Z, Tian X X and Song X Y 2020 Engineering materials with light: recent progress in digital light processing based 3D printing J. Mater. Chem. C 8 13896–917

[188] [188] Chivate A, Guo Z P and Zhou C 2022 Study of proximity effect in projection-based micro stereolithography process Proc. 33rd Annual Int. Solid Freeform Fabrication Symp.—An Additive Manufacturing Conf.

[189] [189] Fouassier J P and Laleve J 2012 Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency (Wiley)

[190] [190] Jenkins A D and Loening K L 1989 Nomenclature Compr. Polym. Sci. Suppl.1 13–54

[191] [191] Lee J H, Prud'Homme R K and Aksay I A 2001 Cure depth in photopolymerization: experiments and theory J. Mater. Res.16 3536–44

[192] [192] Jacobs P F 1992 Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography (Society of Manufacturing Engineers)

[193] [193] Kaur M and Srivastava A K 2002 Photopolymerization: a review J. Macromol. Sci. C 42 481–512

[194] [194] Hull C W 1986 Apparatus for production of three-dimensional objects by stereolithography U.S. Patent 4575330

[195] [195] Wang X, Jiang M, Zhou Z W, Gou J H and Hui D 2017 3D printing of polymer matrix composites: a review and prospective Composites B 110 442–58

[196] [196] Zhu W et al 2017 Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture Biomaterials124 106–15

[197] [197] Soman P, Chung P H, Zhang A P and Chen S C 2013 Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels Biotechnol. Bioeng110 3038–47

[198] [198] De Leon A C, Chen Q Y, Palaganas N B, Palaganas J O, Manapat J and Advincula R C 2016 High performance polymer nanocomposites for additive manufacturing applications React. Funct. Polym.103 141–55

[199] [199] Zhou C and Chen Y 2009. Calibrating large-area mask projection stereolithography for its accuracy and resolution improvements Proc. 2009 Int. Solid Freeform Fabrication Symp. (University of Texas)

[200] [200] Zhou C, Chen Y and Waltz R A 2009 Optimized mask image projection for solid freeform fabrication ASME 2009 Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. (San Diego, California, USA)

[201] [201] Zhou C and Chen Y 2012 Additive manufacturing based on optimized mask video projection for improved accuracy and resolution J. Manuf. Process.14 107–18

[202] [202] Zhou C, Xu H and Chen Y 2021 Spatiotemporal projection-based additive manufacturing: a data-driven image planning method for subpixel shifting in a split second Adv. Intell. Syst.3 2100079

[203] [203] Chivate A and Zhou C 2022. A modified schlieren system for in-situ voxel growth observation in projection-based stereolithography process Proc. 17th Int. Manufacturing Science and Engineering Conf. (American Society of Mechanical Engineers)

[204] [204] Chivate A and Zhou C 2023 Enhanced schlieren system for in situ observation of dynamic light–resin interactions in projection-based stereolithography process J. Manuf. Sci. Eng.145 081005

[205] [205] Deng Q Y, Yang Y, Gao H T, Zhou Y, He Y and Hu S 2017 Fabrication of micro-optics elements with arbitrary surface profiles based on one-step maskless grayscale lithography Micromachines8 314

[206] [206] Yuan C, Kowsari K, Panjwani S, Chen Z C, Wang D, Zhang B, Ng C J X, Alvarado P V Y and Ge Q 2019 Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing ACS Appl. Mater. Interfaces11 40662–8

[207] [207] Crow F C 1977 The aliasing problem in computer-generated shaded images Commun. ACM20 799–805

[208] [208] Chivate A, Guo Z P and Zhou C 2024 Study of proximity effect in projection based micro vat photopolymerization process Addit. Manuf.79 103926

[209] [209] Pucci K 2018 What is grayscale printing? (available at: https://imagexpert.com/what-is-grayscale-printing/)

[210] [210] Park I B, Ha Y M, Kim M S, Kim H C and Lee S H 2012 Three-dimensional grayscale for improving surface quality in projection microstereolithography Int. J. Precis. Eng. Manuf.13 291–8

[211] [211] Kristensson E, Ehn A and Berrocal E 2017 High dynamic spectroscopy using a digital micromirror device and periodic shadowing Opt. Express25 212–22

[212] [212] Jariwala A S, Ding F, Boddapati A, Breedveld V, Grover M A, Henderson C L and Rosen D W 2011 Modeling effects of oxygen inhibition in mask-based stereolithography Rapid Prototyp. J.17 168–75

[213] [213] Jariwala A S 2013 Modeling and Process Planning for Exposure Controlled Projection Lithography (Georgia Institute of Technology)

[214] [214] Wu J T, Zhao Z A, Hamel C M, Mu X M, Kuang X, Guo Z Y and Qi H J 2018 Evolution of material properties during free radical photopolymerization J. Mech. Phys. Solids112 25–49

[215] [215] Dabbagh S R, Sarabi M R, Rahbarghazi R, Sokullu E, Yetisen A K and Tasoglu S 2021 3D-printed microneedles in biomedical applications iScience24 102012

[216] [216] Zheng X Y et al 2016 Multiscale metallic metamaterials Nat. Mater.15 1100–6

[217] [217] Luongo A, Falster V, Doest M B, Ribo M M, Eiriksson E R, Pedersen D B and Frisvad J R 2020 Microstructure control in 3D printing with digital light processing Comput. Graph. Forum39 347–59

[218] [218] Kowsari K, Zhang B, Panjwani S, Chen Z C, Hingorani H, Akbari S, Fang N X and Ge Q 2018 Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing Addit. Manuf.24 627–38

[219] [219] Shan Y J, Krishnakumar A, Qin Z H and Mao H C 2022 Reducing lateral stair-stepping defects in liquid crystal display-based vat photopolymerization by defocusing the image pattern Addit. Manuf.52 102653

[220] [220] Montgomery S M, Demoly F, Zhou K and Qi H J 2023 Pixel-level grayscale manipulation to improve accuracy in digital light processing 3D printing Adv. Funct. Mater.33 2213252

[221] [221] Janusziewicz R, Tumbleston J R, Quintanilla A L, Mecham S J and Desimone J M 2016 Layerless fabrication with continuous liquid interface production Proc. Natl Acad. Sci. USA113 11703–8

[222] [222] Tumbleston J R et al 2015 Continuous liquid interface production of 3D objects Science347 1349–52

[223] [223] Lee B J, Hsiao K, Lipkowitz G, Samuelsen T, Tate L and Desimone J M 2022 Characterization of a 30 m pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization Addit. Manuf.55 102800

[224] [224] Kochhar J S, Quek T C, Soon W J, Choi J, Zou S and Kang L F 2013 Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin J. Pharm. Sci.102 4100–8

[225] [225] Ligon S C, Liska R, Stampfl J, Gurr M and Mlhaupt R 2017 Polymers for 3D printing and customized additive manufacturing Chem. Rev.117 10212–90

[226] [226] Johnson A R and Procopio A T 2019 Low cost additive manufacturing of microneedle masters 3D Print. Med.5 2

[227] [227] Johnson A R, Caudill C L, Tumbleston J R, Bloomquist C J, Moga K A, Ermoshkin A, Shirvanyants D, Mecham S J, Luft J C and Desimone J M 2016 Single-step fabrication of computationally designed microneedles by continuous liquid interface production PLoS One11 e0162518

[228] [228] El-Sayed N, Vaut L and Schneider M 2020 Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery Eur. J. Pharm. Biopharm.154 166–74

[229] [229] Fang J-H, Liu C-H, Hsu R-S, Chen -Y-Y, Chiang W-H, Wang H-M D and Hu S-H 2020 Transdermal composite microneedle composed of mesoporous iron oxide nanoraspberry and PVA for androgenetic alopecia treatment Polymers12 1392

[230] [230] Krieger K J, Bertollo N, Dangol M, Sheridan J T, Lowery M M and O'cearbhaill E D 2019 Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing Microsyst. Nanoeng.5 42

[231] [231] Lal Das A, Mukherjee R, Katiyer V, Kulkarni M, Ghatak A and Sharma A 2007 Generation of sub-micrometer-scale patterns by successive miniaturization using hydrogels Adv. Mater.19 1943–6

[232] [232] Ochoa M, Zhou J, Rahimi R, Badwaik V, Thompson D and Ziaie B 2015 Rapid 3D-print-and-shrink fabrication of biodegradable microneedles with complex geometries Proceedings of the 2015 Transducers-2015 18th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE)

[233] [233] Yao W, Li D D, Zhao Y L, Zhan Z K, Jin G Q, Liang H Y and Yang R H 2020 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing Micromachines11 17

[234] [234] Lim S H, Tiew W J, Zhang J Y, Ho P C L, Kachouie N N and Kang L F 2020 Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide Biofabrication12 035003

[235] [235] Han D, Morde R S, Mariani S, La Mattina A A, Vignali E, Yang C, Barillaro G and Lee H 2020 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion Adv. Funct. Mater.30 1909197

[236] [236] Seong K Y, Seo M S, Hwang D Y, O'cearbhaill E D, Sreenan S, Karp J M and Yang S Y 2017 A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin J. Control Release265 48–56

[237] [237] Khan A, Iqbal M J, Amin S, Bilal H, Bilquees H, Noor A, Mir B and Kaur M 2021 4D printing: the dawn of ‘smart’ drug delivery systems and biomedical applications J. Drug Deliv. Ther.11 131–7

[238] [238] J L X et al 2021 Limpet tooth-inspired painless microneedles fabricated by magnetic field-assisted 3D printing Adv. Funct. Mater.31 2003725

[239] [239] Chen X F, Liu W Z, Dong B Q, Lee J, Ware H O T, Zhang H F and Sun C 2018 High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness Adv. Mater.30 1705683

[240] [240] Shao G B, Hai R H and Sun C 2020 3D printing customized optical lens in minutes Adv. Opt. Mater.8 1901646

[241] [241] Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang T M, Richter C, Helmer D and Rapp B E 2017 Three-dimensional printing of transparent fused silica glass Nature544 337–9

[242] [242] Blachowicz T, Ehrmann G and Ehrmann A 2021 Optical elements from 3D printed polymers e-Polymers21 549–65

[243] [243] Moussus M and Meier M 2021 A 3D-printed Arabidopsis thaliana root imaging platform Lab Chip21 2557–64

[244] [244] Chen C, Rengarajan V, Kjar A and Huang Y 2021 A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays Bioact. Mater6 1130–9

[245] [245] Luan Q Y, Becker J H, Macaraniag C, Massad M G, Zhou J, Shimamura T and Papautsky I 2022 Non-small cell lung carcinoma spheroid models in agarose microwells for drug response studies Lab Chip22 2364–75

[246] [246] Tirado M, Kundu A, Tetard L and Rajaraman S 2020. Digital light processing (DLP) 3D printing of millimeter-scale high-aspect ratio (HAR) structures exceeding 100:1 Proc. IEEE 33rd Int. Conf. on Micro Electro Mechanical Systems (MEMS) (IEEE)

[247] [247] Kaur G, Marmur A and Magdassi S 2020 Fabrication of superhydrophobic 3D objects by digital light processing Addit. Manuf.36 101669

[248] [248] Ou J F, Cheng C Y, Zhou L, Dublon G and Ishii H 2015 Methods of 3D printing micro-pillar structures on surfaces Proc. 28th Annual ACM Symp. on User Interface Software & Technology (ACM)

[249] [249] Lai H N, Gong B, Yin J and Qian J 2022 3D printing topographic cues for cell contact guidance: a review Mater. Des.218 110663

[250] [250] Liu L Y, Liu S Y, Schelp M and Chen X F 2021 Rapid 3D printing of bioinspired hybrid structures for high-efficiency fog collection and water transportation ACS Appl. Mater. Interfaces13 29122–9

[251] [251] Li X J, Yang Y, Liu L Y, Chen Y Y, Chu M, Sun H F, Shan W T and Chen Y 2020 3D-printed cactus-inspired spine structures for highly efficient water collection Adv. Mater. Interfaces7 1901752

[252] [252] Ray S S, Dommati H, Wang J C, Lee H K, Park Y I, Park H, Kim I C, Chen S S and Kwon Y N 2021 Facile approach for designing a novel micropatterned antiwetting membrane by utilizing 3D printed molds for improved desalination performance J. Membr. Sci.637 119641

[253] [253] Li C X, Wu L, Yu C L, Dong Z C and Jiang L 2017 Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops Angew. Chem.129 13811–6

[254] [254] Yang Y, Li X J, Zheng X, Chen Z Y, Zhou Q F and Chen Y 2018 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation Adv. Mater.30 1704912

[255] [255] Kim D H, Kim S, Park S R, Fang N X and Cho Y T 2021 Shape-deformed mushroom-like reentrant structures for robust liquid-repellent surfaces ACS Appl. Mater. Interfaces13 33618–26

[256] [256] Huang J D, Wang T J, Segura L J, Joshi G S, Sun H Y and Zhou C 2020. Spatiotemporal fusion network for the droplet behavior recognition in inkjet printing Proc. 15th Int. Manufacturing Science and Engineering Conf. vol 84256 (American Society of Mechanical Engineers) p V001T01A038

[257] [257] Wang S et al 2021 Machine-learning micropattern manufacturing Nano Today38 101152

[258] [258] Samri M, Thiemecke J, Prinz E, Dahmen T, Hensel R and Arzt E 2022 Predicting the adhesion strength of micropatterned surfaces using supervised machine learning Mater. Today53 41–50

[259] [259] Daz Lantada A, Franco-Martnez F, Hengsbach S, Rupp F, Thelen R and Bade K 2020 Artificial intelligence aided design of microtextured surfaces: application to controlling wettability Nanomaterials10 2287

Tools

Get Citation

Copy Citation Text

Chivate Aditya, Zhou Chi. Additive manufacturing of micropatterned functional surfaces: a review[J]. International Journal of Extreme Manufacturing, 2024, 6(4): 42004

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Nov. 8, 2023

Accepted: Dec. 25, 2024

Published Online: Dec. 25, 2024

The Author Email:

DOI:10.1088/2631-7990/ad4240

Topics