Journal of Innovative Optical Health Sciences, Volume. 15, Issue 6, 2240007(2022)

Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy

Lu Guo1... Bo Xu2, Haobin Chen3 and Ying Tang1,* |Show fewer author(s)
Author Affiliations
  • 1Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, P. R. China
  • 2Department of Urology, The First Hospital of Jilin University, Changchun 130021 P. R. China
  • 3Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, P. R. China
  • show less
    References(42)

    [1] D. E. Dolmans, D. Fukumura, R. K. Jain. Photodynamic therapy for cancer. Nat. Rev. Cancer., 3, 380-387(2003).

    [2] M. Triesscheijn, P. Baas, J. H. Schellens, F. A. Stewart. Photodynamic therapy in oncology. Oncologist, 11, 1034-1044(2006).

    [3] N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, Y. Zhang. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 18, 1580-1585(2012).

    [4] M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 40, 340-362(2011).

    [5] M. Niedre, M. S. Patterson, B. C. Wilson. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem. Photobiol., 75, 382-391(2002).

    [6] J. F. Lovell, T. W. B. Liu, J. Chen, G. Zheng. Activatable photosensitizers for imaging and therapy. Chem. Rev., 110, 2839-2857(2010).

    [7] S. Cui, D. Yin, Y. Chen, Y. Di, H. Chen, Y. Ma, S. Achilefu, Y. Gu. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano, 7, 676-688(2013).

    [8] W. Fan, P. Huang, X. Chen. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev., 45, 6488-6519(2016).

    [9] S. S. Lucky, K. C. Soo, Y. Zhang. Nanoparticles in photodynamic therapy. Chem. Rev., 115, 1990-2042(2015).

    [10] M. Rojnik, P. Kocbek, F. Moret, C. Compagnin, L. Celotti, M. J. Bovis, J. H. Woodhams, A. J. MacRobert, D. Scheglmann, W. Helfrich, M. J. Verkaik, E. Papini, E. Reddi, J. Kos. In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomedicine, 7, 663-677(2012).

    [11] W. S. Chenggen Qian, J. Yu, Y. Chen, Q. Hu, X. Xiao. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater., 28, 3313-3320(2016).

    [12] K. Liu, X. Liu, Q. Zeng, Y. Zhang, L. Tu, T. Liu, X. Kong, Y. Wang, F. Cao, S. A. G. Lambrechts, M. C. G. Aalders, H. Zhang. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano, 6, 4054-4062(2012).

    [13] M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, X. Chen. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy. Nanoscale, 6, 8274-8282(2014).

    [14] G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, Y. Zhao. Mn 2+ dopant-controlled synthesis of NaYF 4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater., 24, 1226-1231(2012).

    [15] B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 5, 1086-1094(2011).

    [16] L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui, J. Li. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano, 6, 8030-8040(2012).

    [17] J. Qian, A. Gharibi, S. He. Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy. J. Biomed. Opt., 14, 014012(2009).

    [18] I. T. Teng, Y. J. Chang, L. S. Wang, H. Y. Lu, L. C. Wu, C. M. Yang, C. C. Chiu, C. H. Yang, S. L. Hsu, J. A. Ho. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials, 34, 7462-7470(2013).

    [19] Z. X. Zhao, Y. Z. Huang, S. G. Shi, S. H. Tang, D. H. Li, X. L. Chen. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy. Nanotechnology, 25, 285701(2014).

    [20] L. Shi, B. Hernandez, M. Selke. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J. Am. Chem. Soc., 128, 6278-6279(2006).

    [21] J. M. Tsay, M. Trzoss, L. Shi, X. Kong, M. Selke, M. E. Jung, S. Weiss. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J. Am. Chem. Soc., 129, 6865-6871(2007).

    [22] C. Wu, D. T. Chiu. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed., 52, 3086-3109(2013).

    [23] J. Pecher, S. Mecking. Nanoparticles of conjugated polymers. Chem. Rev., 110, 6260-6279(2010).

    [24] C. Wu, Y. Jin, T. Schneider, D. R. Burnham, P. B. Smith, D. T. Chiu. Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry. Angew. Chem., Int. Ed., 49, 9436-9440(2010).

    [25] C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, D. T. Chiu. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc., 132, 15410-15417(2010).

    [26] F. Ye, C. Wu, Y. Jin, M. Wang, Y. H. Chan, J. Yu, W. Sun, S. Hayden, D. T. Chiu. A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chem. Commun., 48, 1778-1780(2012).

    [27] S. Kim, C. K. Lim, J. Na, Y. D. Lee, K. Kim, K. Choi, J. F. Leary, I. C. Kwon. Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem. Commun., 46, 1617-1619(2010).

    [28] C. Wu, S. J. Hansen, Q. Hou, J. Yu, M. Zeigler, Y. Jin, D. R. Burnham, J. D. McNeill, J. M. Olson, D. T. Chiu. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed., 50, 3430-3434(2011).

    [29] K. Pu, N. Chattopadhyay, J. Rao. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J. Control. Release, 240, 312-322(2016).

    [30] H. Zhu, Y. Fang, X. Zhen, N. Wei, Y. Gao, K. Q. Luo, C. Xu, H. Duan, D. Ding, P. Chen, K. Pu. Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem. Sci., 7, 5118-5125(2016).

    [31] X. Zhen, C. Zhang, C. Xie, Q. Miao, K. L. Lim, K. Pu. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano., 10, 6400-6409(2016).

    [32] Q. Miao, Y. Lyu, D. Ding, K. Pu. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH. Adv. Mater., 28, 3662-3668(2016).

    [33] Y. Lyu, Y. Fang, Q. Miao, X. Zhen, D. Ding, K. Pu. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano, 10, 4472-4481(2016).

    [34] Y. H. Chan, C. Wu, F. Ye, Y. Jin, P. B. Smith, D. T. Chiu. Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. Anal. Chem., 83, 1448-1455(2011).

    [35] F. Ye, C. Wu, Y. Jin, Y. H. Chan, X. Zhang, D. T. Chiu. Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc., 133, 8146-8149(2011).

    [36] J. H. Moon, E. Mendez, Y. Kim, A. Kaur. Conjugated polymer nanoparticles for small interfering RNA delivery. Chem. Commun., 47, 8370-8372(2011).

    [37] Y. Lyu, C. Xie, S. A. Chechetka, E. Miyako, K. Pu. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc., 138, 9049-9052(2016).

    [38] S. Li, K. Chang, K. Sun, Y. Tang, N. Cui, Y. Wang, W. Qin, H. Xu, C. Wu. Amplified singlet oxygen generation in semiconductor polymer dots for photodynamic cancer therapy. ACS Appl. Mater. Interfaces, 8, 3624-3634(2016).

    [39] Y. Tang, H. Chen, K. Chang, Z. Liu, Y. Wang, S. Qu, H. Xu, C. Wu. Photo-cross-linkable polymer dots with stable sensitizer loading and amplified singlet oxygen generation for photodynamic therapy. ACS Appl. Mater. Interfaces, 9, 3419-3431(2017).

    [40] C. T. Kuo, A. M. Thompson, M. E. Gallina, F. Ye, E. S. Johnson, W. Sun, M. Zhao, J. Yu, I. C. Wu, B. Fujimoto, C. C. Dufort, M. A. Carlson, S. R. Hingorani, A. L. Paguirigan, J. P. Radich, D. T. Chiu. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nat. Commun., 7, 1-11(2016).

    [41] D. Chen, I. C. Wu, Z. Liu, Y. Tang, H. Chen, J. Yu, C. Wu, D. T. Chiu. Semiconducting polymer dots with bright narrow-band emission at 800nm for biological applications. Chem. Sci., 8, 3390-3398(2017).

    [42] H. Park, K. Na. Conjugation of the photosensitizer Chlorin e6 to pluronic F127 for enhanced cellular internalization for photodynamic therapy. Biomaterials, 34, 6992-7000(2013).

    Tools

    Get Citation

    Copy Citation Text

    Lu Guo, Bo Xu, Haobin Chen, Ying Tang. Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 21, 2022

    Accepted: Jul. 4, 2022

    Published Online: Nov. 25, 2022

    The Author Email: Tang Ying (tuboshu123@jlu.edu.cn)

    DOI:10.1142/S1793545822400077

    Topics