Optics and Precision Engineering, Volume. 30, Issue 3, 340(2022)
Multi-stage boundary reference network for action segmentation
[1] [1] 1张红颖, 安征. 基于改进双流时空网络的人体行为识别[J]. 光学 精密工程, 2021, 29(2): 420-429. doi: 10.37188/OPE.20212902.0420ZHANGH Y, ANZH. Human action recognition based on improved two-stream spatiotemporal network[J]. Opt. Precision Eng., 2021, 29(2): 420-429. (in Chinese). doi: 10.37188/OPE.20212902.0420
[2] [2] 2马世伟, 刘丽娜, 傅琪, 等. 采用PHOG融合特征和多类别Adaboost分类器的行为识别[J]. 光学 精密工程, 2018, 26(11): 2827-2837. doi: 10.3788/ope.20182611.2827MASH W, LIUL N, FUQ, et al. Using PHOG fusion features and multi-class Adaboost classifier for human behavior recognition[J]. Opt. Precision Eng., 2018, 26(11): 2827-2837. (in Chinese). doi: 10.3788/ope.20182611.2827
[3] OORD AVAN DEN, DIELEMAN S et al. WaveNet: a generative model for raw audio[J]. CoRR(2016).
[4] LEA C, FLYNN M D, VIDAL R et al. Temporal convolutional networks for action segmentation and detection[C], 1003-1012(2017).
[5] KUEHNE H, RICHARD A, GALL J. A hybrid RNN-HMM approach for weakly supervised temporal action segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 765-779(2018).
[6] [6] 6李庆辉, 李艾华, 郑勇, 等. 利用几何特征和时序注意递归网络的动作识别[J]. 光学 精密工程, 2018, 26(10): 2584-2591. doi: 10.3788/ope.20182610.2584LIQ H, LIA H, ZHENGY, et al. Action recognition using geometric features and recurrent temporal attention network[J]. Opt. Precision Eng., 2018, 26(10): 2584-2591. (in Chinese). doi: 10.3788/ope.20182610.2584
[7] SINGH B, MARKS T K, JONES M et al. A multi- stream Bi-directional recurrent neural network for fine-grained action detection[C], 1961-1970(2016).
[8] FARHA Y A, GALL J. MS-TCN: multi-stage temporal convolutional network for action segmentation[C], 3570-3579(2019).
[9] LI S J, ABUFARHA Y, LIU Y et al. MS-TCN: multi-stage temporal convolutional network for action segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 99, 1(1756).
[10] WANG Z Z, GAO Z T, WANG L M et al. Boundary-aware cascade networks for temporal action segmentation[J]. Computer Vision-ECCV, 2020, 34-51(2020).
[11] LIN T W, ZHAO X, SU H S et al. BSN: boundary sensitive network for temporal action proposal generation[J]. Computer Vision-ECCV, 2018, 3-21(2018).
[12] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition?[C], 4724-4733(2017).
[13] LEI P, TODOROVIC S. Temporal deformable residual networks for action segmentation in videos[C], 6742-6751(2018).
[14] LEA C, REITER A, VIDAL R et al. Segmental spatiotemporal CNNs for fine-grained action segmentation[J]. Computer Vision-ECCV, 2016, 36-52(2016).
[15] KUEHNE H, GALL J, SERRE T. An end-to-end generative framework for video segmentation and recognition[C], 1-8(2016).
[16] RICHARD A, KUEHNE H, GALL J. Weakly supervised action learning with RNN based fine-to- coarse modeling[C], 1273-1282(2017).
Get Citation
Copy Citation Text
Lin MAO, Zhe CAO, Dawei YANG, Rubo ZHANG. Multi-stage boundary reference network for action segmentation[J]. Optics and Precision Engineering, 2022, 30(3): 340
Category: Information Sciences
Received: Apr. 20, 2021
Accepted: --
Published Online: Mar. 4, 2022
The Author Email: Zhe CAO (cao_zhe@foxmail.com)