Electronics Optics & Control, Volume. 29, Issue 12, 58(2022)

UAV Real-time Detection Algorithm Based on SandGlass Bottleneck Block

LI Hong1...2,3, DU Yunyan1,2,3, SHAO Linsong2,3, LEI Ming2,3, PENG Jinjin1,2,3, YANG Jinhui1,2,3, and MAO Yao1,23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(26)

    [4] [4] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE,2015.doi:10.1109/ICCV.2015.169.

    [5] [5] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:toward real-time object detection with region Proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

    [6] [6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV:IEEE,2016:779-788.

    [7] [7] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI:IEEE, 2017.doi:10.1109/CVPR.2017.690.

    [8] [8] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Amsterdam:ECCV,2016:21-37.

    [9] [9] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv preprint arXiv:1804.02767,2018.

    [10] [10] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv preprint arXiv:2004.10934,2020.

    [11] [11] LAW H,DENG J.Cornernet:detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:734-750.

    [12] [12] DUAN K W,BAI S,XIE L X,et al.Centernet:keypoint triplets for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Seoul:IEEE,2019.doi:10.1109/ICCV.2019.00667.

    [13] [13] TIAN Z,SHEN C H,CHEN H,et al.Fcos:fully convolutional one-stage object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Seoul:IEEE,2019.doi:10.1109/ICCV.2019.00972.

    [15] [15] ZHOU D Q,HOU Q B,CHEN Y P,et al.Rethinking bottleneck structure for efficient mobile network design[C]//European Conference on Computer Vision(ECCV).Glasgow:ECCV,2020:680-697.

    [16] [16] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City,UT:IEEE,2018.doi:10.1109/CVPR.2018.00745.

    [17] [17] HOWARD A G,ZHU M L,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv preprint arXiv:1704.04861,2017.

    [18] [18] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv preprint arXiv:1409.1556,2014.

    [19] [19] SANDLER M,HOWARD A,ZHU M L,et al.Mobilenetv2:inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City,UT:IEEE,2018.doi:10.1109/CVPR.2018.00474.

    [20] [20] HOWARD A,SANDLER M,CHEN B,et al.Searching for Mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).2019.doi:10.1109/ICCV.Seoul:IEEE,2019.00140.

    [21] [21] JIN H F,SONG Q Q,HU X.Auto-keras:efficient neural architecture search with network morphism[J].arXiv preprint arXiv:1806.10282,2018,5.

    [22] [22] ZHANG X Y,ZHOU X Y,LIN M X,et al.Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT:IEEE,2018.doi:10.1109/CVPR.2018.00716.

    [23] [23] MA N N,ZHANG X Y,ZHENG H T,et al.Shufflenet v2:practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:116-131.

    [24] [24] HAN K,WANG Y H,TIAN Q,et al.GhostNet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,WA:IEEE,2020.doi:10.1109/CVPR42600.2020.00165.

    [25] [25] LIN T Y,DOLLR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI:IEEE,2017.doi:10.1109/CVPR.2017.106.

    [26] [26] LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City,UT:IEEE,2018.doi:10.1109/CVPR.2018.00913.

    [27] [27] LIU S T,HUANG D,WANG Y H.Learning spatial fusion for single-shot object detection[J].arXiv preprint arXiv:1911.09516,2019.

    [28] [28] GHIASI G,LIN T Y,LE Q V.Nas-FPN:Learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA:IEEE, 2019.doi:10.1109/CVPR.2019.00720.

    [29] [29] XU H,YAO L W,ZHANG W,et al.Auto-FPN:automatic network architecture adaptation for object detection beyond classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV).Seoul:IEEE,2019:6649-6658.

    Tools

    Get Citation

    Copy Citation Text

    LI Hong, DU Yunyan, SHAO Linsong, LEI Ming, PENG Jinjin, YANG Jinhui, MAO Yao. UAV Real-time Detection Algorithm Based on SandGlass Bottleneck Block[J]. Electronics Optics & Control, 2022, 29(12): 58

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 24, 2021

    Accepted: --

    Published Online: Feb. 4, 2023

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2022.12.011

    Topics