Acta Optica Sinica, Volume. 42, Issue 13, 1327001(2022)

Frequency Response Characteristics of SiN Membrane Resonators with High-Frequency Nonharmonic Excitation

Qiang Zhang1,2、*, Xinqiang Jiang1, Doudou Wang1, and Yongmin Li1,2、**
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Shanxi , China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    References(42)

    [1] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391-1452(2014).

    [2] Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Physics Reports, 525, 223-254(2013).

    [3] Liu Y C, Hu Y W, Wong C W et al. Review of cavity optomechanical cooling[J]. Chinese Physics B, 22, 114213(2013).

    [4] Liao J Q, Tian L. Macroscopic quantum superposition in cavity optomechanics[J]. Physical Review Letters, 116, 163602(2016).

    [5] He Z Q, Dong G J. Polarization gradient cooling and trapping of charged and neutral microspheres[J]. Journal of the Optical Society of America B, 38, 60-73(2020).

    [6] Dong C H, Fiore V, Kuzyk M C et al. Optomechanical dark mode[J]. Science, 338, 1609-1613(2012).

    [7] Mirhosseini M, Sipahigil A, Kalaee M et al. Superconducting qubit to optical photon transduction[J]. Nature, 588, 599-603(2020).

    [8] Chen X Y, Yin Z Q. High-precision gravimeter based on a nano-mechanical resonator hybrid with an electron spin[J]. Optics Express, 26, 31577-31588(2018).

    [9] Wang Q, Zhang J Q, Ma P C et al. Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field[J]. Physical Review A, 91, 063827(2015).

    [10] Zhang J Q, Li Y, Feng M et al. Precision measurement of electrical charge with optomechanically induced transparency[J]. Physical Review A, 86, 053806(2012).

    [11] Xiong H, Liu Z X, Wu Y. Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation[J]. Optics Letters, 42, 3630-3633(2017).

    [12] Zhang K Y, Bariani F, Dong Y et al. Proposal for an optomechanical microwave sensor at the subphoton level[J]. Physical Review Letters, 114, 113601(2015).

    [13] Jing H, Özdemir S K, Lü X Y et al. PT-symmetric phonon laser[J]. Physical Review Letters, 113, 053604(2014).

    [14] Zhang X Y, Li Z Y, Li Y M. Efficient suppression of laser excess noises for quantum optomechanical system[J]. Acta Photonica Sinica, 44, 0827001(2015).

    [15] Liao Q H, Zheng Q H, Yan Q R et al. Study on entropy squeezing of the atom in an atom-cavity-optomechanical system[J]. Chinese Journal of Lasers, 43, 0218001(2016).

    [16] Ma P C, Zhang J Q, Xiao Y et al. Tunable double optomechanically induced transparency in an optomechanical system[J]. Physical Review A, 90, 043825(2014).

    [17] Jin Y B, Yan J W, Rahman S J et al. 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum[J]. Photonics Research, 9, 1344-1350(2021).

    [18] Shen Z, Zhang Y L, Chen Y et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 10, 657-661(2016).

    [19] Lei F C, Gao M, Du C G et al. Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system[J]. Optics Express, 23, 11508-11517(2015).

    [20] Ma J Y, Wen J M, Ding S L et al. Chip-based optical isolator and nonreciprocal parity-time symmetry induced by stimulated Brillouin scattering[J]. Laser & Photonics Reviews, 14, 1900278(2020).

    [21] Xu X W, Zhao Y J, Wang H et al. Quantum nonreciprocality in quadratic optomechanics[J]. Photonics Research, 8, 143-150(2020).

    [22] Pan F, Cui K Y, Bai G R et al. Radiation-pressure-antidamping enhanced optomechanical spring sensing[J]. ACS Photonics, 5, 4164-4169(2018).

    [23] Liu Y C, Xiao Y F, Luan X S et al. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics[J]. Physical Review Letters, 110, 153606(2013).

    [24] Xu H, Jiang L Y, Clerk A A et al. Nonreciprocal control and cooling of phonon modes in an optomechanical system[J]. Nature, 568, 65-69(2019).

    [25] Guo Y B, Xiao Y, Yu Y F et al. Optical bistability and entanglement in a nonlinear optomechanical system[J]. Acta Optica Sinica, 35, 1027002(2015).

    [26] Gu W J, Li G X, Yang Y P. Generation of squeezed states in a movable mirror via dissipative optomechanical coupling[J]. Physical Review A, 88, 013835(2013).

    [27] Xiong B, Li X, Chao S L et al. Strong mechanical squeezing in an optomechanical system based on Lyapunov control[J]. Photonics Research, 8, 151-159(2020).

    [28] Li Z Y, You X, Li Y M et al. Multimode four-wave mixing in an unresolved sideband optomechanical system[J]. Physical Review A, 97, 033806(2018).

    [29] Li Z Y, Ren Z Q, Li Y M et al. High-gain and narrow-bandwidth optical amplifier via optomechanical four-wave mixing[J]. Physical Review Applied, 11, 064048(2019).

    [30] Higginbotham A P, Burns P S, Urmey M D et al. Harnessing electro-optic correlations in an efficient mechanical converter[J]. Nature Physics, 14, 1038-1042(2018).

    [31] Sheng J T, Wei X R, Yang C et al. Self-organized synchronization of phonon lasers[J]. Physical Review Letters, 124, 053604(2020).

    [32] Wang J. Nonreciprocity in a three-cavity optomechanical system[J]. Laser & Optoelectronics Progress, 57, 191201(2020).

    [33] Xu H, Mason D, Jiang L Y et al. Topological energy transfer in an optomechanical system with exceptional points[J]. Nature, 537, 80-83(2016).

    [34] Yang C, Wei X R, Sheng J T et al. Phonon heat transport in cavity-mediated optomechanical nanoresonators[J]. Nature Communications, 11, 4656(2020).

    [35] He Z Q, Dong G J. Thermal conduction in a harmonic chain coupled to two cavity-optomechanical systems[J]. Physical Review A, 103, 053509(2021).

    [36] Gavartin E, Verlot P, Kippenberg T J. Stabilization of a linear nanomechanical oscillator to its thermodynamic limit[J]. Nature Communications, 4, 2860(2013).

    [37] Wei X R, Sheng J T, Yang C et al. Controllable two-membrane-in-the-middle cavity optomechanical system[J]. Physical Review A, 99, 023851(2019).

    [38] Jöckel A, Rakher M T, Korppi M et al. Spectroscopy of mechanical dissipation in micro-mechanical membranes[J]. Applied Physics Letters, 99, 143109(2011).

    [39] Arı A B, Karakan M C, Yanık C et al. Intermodal coupling as a probe for detecting nanomechanical modes[J]. Physical Review Applied, 9, 034024(2018).

    [40] Abusoua A, Daqaq M F. On using a strong high-frequency excitation for parametric identification of nonlinear systems[J]. Journal of Vibration and Acoustics, 139, 051012(2017).

    [41] Li Z Y, Zhang Q, You X et al. Suppression of phonon tunneling losses by microfiber strings for high-Q membrane microresonators[J]. Applied Physics Letters, 109, 191903(2016).

    [42] Zwickl B M, Shanks W E, Jayich A M et al. High quality mechanical and optical properties of commercial silicon nitride membranes[J]. Applied Physics Letters, 92, 103125(2008).

    Tools

    Get Citation

    Copy Citation Text

    Qiang Zhang, Xinqiang Jiang, Doudou Wang, Yongmin Li. Frequency Response Characteristics of SiN Membrane Resonators with High-Frequency Nonharmonic Excitation[J]. Acta Optica Sinica, 2022, 42(13): 1327001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Nov. 2, 2021

    Accepted: Jan. 13, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Zhang Qiang (qzhang@sxu.edu.cn), Li Yongmin (yongmin@sxu.edu.cn)

    DOI:10.3788/AOS202242.1327001

    Topics