Journal of the Chinese Ceramic Society, Volume. 51, Issue 7, 1724(2023)
Template-Assisted Synthesis of Iron Phosphide Hollow Nanorods and Its Electrochemical Properties
[2] [2] ZHOU Y, QI H L, YANG J Y, et al. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage[J]. Energy Environ Sci, 2021, 14(4): 1854-1896.
[3] [3] SAMBATH K K, NITIN C, YEONWOONG J, et al. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications[J]. ACS Energy Lett, 2018, 3(2): 482-495.
[4] [4] EFTEKHARI A, Metrics for fast super capacitors as energy storage devies[J]. ACS Sustainable Chem Eng, 2019, 7(4): 3688-3691.
[6] [6] AGARWAL A, SANKAPAL B R. Metal phosphides: Topical advances in the design of supercapacitors[J]. J Mater Chem A, 2021, 9(36): 20241-20276.
[9] [9] LUO J L, ZHENG Z, KUMAMOTO A, et al. PEDOT coated iron phosphide nanorod arrays as high-performance supercapacitor negative electrodes[J]. Chem Commun, 2018, 54(7): 794-797.
[10] [10] LIANG B L, ZHENG Z, RETANA M, et al. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor[J]. Nanotechnology, 2019, 30(29): 295401.
[11] [11] ZARDKHOSHOUI A M, ASHTIANI M M, SARPARAST M, et al. Enhanced the energy density of supercapacitors via rose-like nanoporous ZnGa2S4 hollow spheres cathode and yolk-shell FeP hollow spheres anode[J]. J Power Sources, 2020, 450: 227691.
[12] [12] ZARDKHOSHOUI A M, DAVARANI S S H. Designing a flexible all-solid-state supercapacitor based on CuGa2O4 and FeP-rGO electrodes[J]. J Alloys Compd, 2019, 773: 527-536.
[13] [13] XIAO W, ZHOU W J, YU H, et al. Template synthesis of hierarchical mesoporous δ-MnO2 hollow microspheres as electrode material for high-performance symmetric supercapacitor[J]. Electrochim Acta, 2018, 264: 1-11.
[14] [14] KOAK G, BTN V, TUNCER C. Production of NiO, NiO/Ag, NiO/Au, and NiO/Pt hollow spheres by using block copolymer stabilized microspheres as a template[J]. J Appl Polym Sci, 2021, 138(44): 51299.
[15] [15] ZHANG H M, ZHOU M, ZHAO H P, et al. Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion[J]. Nanotechnology, 2021, 32(50): 502006.
[16] [16] ZHANG Z F, WU C X, CHEN Z H, et al. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage[J]. J Mater Chem A, 2020, 8(6): 3369-3378.
[17] [17] LI C Q, SHEN X, DING R C, et al. Excellent microwave absorption properties based on a composite of one dimensional Mo2C@C nanorods and a PVDF matrix[J]. RSC Adv, 2019, 9(37): 21243-21248.
[18] [18] ZHANG Z Z, ZHANG Q D, JIA L Y, et al. Effects of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1, 2-propandiol[J]. Catal Sci Technol, 2016, 6(6): 1842-1849.
[19] [19] CHEN P Z, XU K, LI X L, et al. Ultrathin nanosheets of feroxyhyte: A new two-dimensional material with robust ferromagnetic behavior[J]. Chem Sci, 2014, 5(6): 2251.
[20] [20] GE G, LIU M, LIU C, et al. Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation[J]. J Mater Chem A, 2019, 7(15): 9222-9229.
[21] [21] JI X F, CHENG C Q, ZANG Z H, et al. Ultrathin and porous δ-FeOOH modified Ni3S2 3D heterostructure nanosheets with excellent alkaline overall water splitting performance[J]. J Mater Chem A, 2020, 8(40): 21199-21207.
[22] [22] WANG Q, WANG B Y, ZHANG Z, et al. Tailoring yolk-shell FeP@carbon nanoboxes with engineered void space for pseudocapacitance-boosted lithium storage[J]. Inorg Chem Front, 2018, 5(10): 2605-2614.
[23] [23] WANG X J, CHEN K, WANG G, et al. Rational design of three-dimensional graphene encapsulated with hollow FeP@Carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries[J]. ACS Nano, 2017, 11(11): 11602-11616.
[25] [25] WU S J, LU J W, DING Z C, et al. Cr(vi) removal by mesoporous FeOOH polymorphs: Performance and mechanism[J]. RSC Adv, 2016, 6(85): 82118-82130.
[26] [26] HAN F, MA L J, SUN Q, et al. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries[J]. Nano Res, 2014, 7(11): 1706-1717.
[27] [27] HE X Y, LI R M, LIU J Y, et al. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors[J]. Chem Eng J, 2018, 334: 1573-1583.
[29] [29] GUND G S, DUBAL D P, CHODANKAR N R, et al. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel[J]. Sci Rep, 2015, 5: 12454.
[30] [30] CHENG X P, GUI X C, LIN Z Q, et al. Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes[J]. J Mater Chem A, 2015, 3(42): 20927-20934.
[31] [31] JIANG Q L, XIAN X B, XIAO W, et al. Template-assisted synthesis of porous manganese dioxide hollow rods as supercapacitor electrode material[J]. J Electron Mater, 2022, 51(12): 6792-6802.
[32] [32] ZOU Z H, XIAO W, ZHANG Y H, et al. Facile synthesis of freestanding cellulose/RGO/silver/Fe2O3 hybrid film for ultrahigh-areal-energy-density flexible solid-state supercapacitor[J]. Appl Surf Sci, 2020, 500: 144244.
[36] [36] GUAN D H, GAO Z, YANG W L, et al. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material[J]. Mater Sci Eng B, 2013, 178(10): 736-743.
[37] [37] NIE G D, LU X F, LEI J Y, et al. Electrospun V2O5-doped α-Fe2O3 composite nanotubes with tunable ferromagnetism for high-performance supercapacitor electrodes[J]. J Mater Chem A, 2014, 2(37): 15495-15501.
[38] [38] SETHURAMAN B, PURUSHOTHAMAN K K, MURALIDHARAN G. Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors[J]. RSC Adv, 2014, 4(9): 4631-4637.
[39] [39] WANG H W, XU Z J, YI H, et al. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors[J]. Nano Energy, 2014, 7: 86-96.
[42] [42] RAN F T, XU X Q, PAN D, et al. Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nanomicro Lett, 2020, 12(1): 46.
[43] [43] VIDHYADHARAN B, MISNON I I, AZIZ R A, et al. Superior supercapacitive performance in electrospun copper oxide nanowire electrodes[J]. J Mater Chem A, 2014, 2(18): 6578-6588.
[44] [44] ZHANG G X, XIAO X, LI B, et al. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors[J]. J Mater Chem A, 2017, 5(18): 8155-8186.
[45] [45] LIU T, JIANG C J, YOU W, et al. Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance[J]. J Mater Chem A, 2017, 5(18): 8635-8643.
Get Citation
Copy Citation Text
XIAO Wei, JIANG Qinglin, YANG Xinyu, LIANG Guo, XIAN Xiaobin, ZHANG Yanhua. Template-Assisted Synthesis of Iron Phosphide Hollow Nanorods and Its Electrochemical Properties[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1724
Category:
Received: Feb. 3, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Wei XIAO (showame@aliyun.com)
CSTR:32186.14.