Acta Photonica Sinica, Volume. 42, Issue 3, 320(2013)
Discriminant Manifold Learning Approach for Hyperspectral Image Dimension Reduction
[1] [1] CHANG C I. Hyperspectral data exploitation: theory and applications[M]. New Jersey: Wiley-Interscience, 2007.
[2] [2] GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704): 1147-1153.
[3] [3] KESHAVA N, MUSTARD J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57.
[4] [4] HUGHES G F. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63.
[5] [5] BACHMANN C M, AINSWORTH T L, FUSINA R A. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441-454.
[6] [6] CHANG C I, WANG S. Constrained band selection for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1575-1585.
[7] [7] HARSANYI J C, CHANG C I. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 779-785.
[8] [8] FARRELL J M D, MERSEREAU R M. On the impact of pca dimension reduction for hyperspectral detection of difficult targets[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 192-195.
[9] [9] FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Human Genetics, 1936, 7(2): 179-188.
[10] [10] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(22): 2323-2326.
[11] [11] TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(22): 2319-2323.
[12] [12] CAI D, HE X, HAN J, et al. Orthogonal laplacianfaces for face recognition[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3608-3614.
[13] [13] CRAWFORD M M, MA L, KIM W. Exploring nonlinear manifold learning for classification of hyperspectral data[M]. // PRASAD S, et al. Optical remote sensing. Heidelberg: Springer, 2011.
[14] [14] DONOHO D L, GRIMES C. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591-5596.
[15] [15] YAN S, XU D, ZHANG B, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
[16] [16] ZHANG T, TAO D, LI X, et al. Patch alignment for dimensionality reduction[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1299-1313.
[17] [17] HE X, NIYOGI P. Locality preserving projections[C]. in Advances in Neural Information Processing Systems, 2004, 153-160.
[18] [18] MA Y, NIYOGI P, SAPIRO G, et al. Dimensionality reduction via subspace and submanifold learning[J]. IEEE Signal Processing Magazine, 2011, 28(2): 14-15.
[19] [19] CHUNG F R K. Spectral graph theory[M]. Rhode Island: American Mathematical Society, 1997.
[20] [20] LANDGREBE D A. Signal theory methods in multispectral remote sensing[M]. New Jersey: Wiley, 2003.
[21] [21] KUO B, LANDGREBE D A. Nonparametric weighted feature extraction for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 1096-1105.
[22] [22] DU B, ZHANG L, ZHANG L, et al. A discriminative manifold learning based dimension reduction method for hyperspectral classification[J]. International Journal of Fuzzy Systems, 2012, 14(2): 272-277.
Get Citation
Copy Citation Text
DU Bo, ZHANG Le-fei, ZHANG Liang-pei, HU Wen-bin. Discriminant Manifold Learning Approach for Hyperspectral Image Dimension Reduction[J]. Acta Photonica Sinica, 2013, 42(3): 320
Received: Sep. 13, 2012
Accepted: --
Published Online: Mar. 5, 2013
The Author Email: Bo DU (gunspace@163.com)