Journal of Inorganic Materials, Volume. 37, Issue 5, 499(2022)
[1] H QI, Z ZUO R. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A, 7, 3971-3978(2019).
[2] Y LIU Z, S LU J, Q MAO Y et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J. Eur. Ceram. Soc., 38, 4939-4945(2018).
[3] F ZHU L, K YAN Y, Y LENG H. Energy-storage performance of NaNbO3 based multilayered capacitors. J. Mater. Chem. C, 9, 7950-7957(2021).
[4] H SHIMIZU, Z GUO H, E REYES-LILLO S. Lead-free antiferroelectric:
[5] X LIU, Y ZHAO Y. Research progress of antiferroelectric energy storage ceramics. Electronic Components and Materials, 39, 55-66(2020).
[6] T MATTHIAS B. New ferroelectric crystals. Physical Review, 75, 1771(1949).
[7] P VOUSDEN. The non-polarity of sodium niobate. Acta. Cryst., 5, 690(1952).
[8] F ZHANG H, B YANG, X YAN H et al. Isolation of a ferroelectric intermediate phase in antiferroelectric dense sodium niobate ceramics. Acta Mater., 179, 255-261(2019).
[9] Z GUO H, H SHIMIZU, RANDALL CLIVE A. Microstructural evolution in NaNbO3-based antiferroelectrics. J. Appl. Phys., 118, 174107(2015).
[10] Z GUO H, H SHIMIZU, RANDALL CLIVE A. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl. Phys. Lett., 107, 112904(2015).
[11] S GAO L, Z GUO H, J ZHANG S. Stabilized antiferroelectricity in
[12] Z GUO H, H SHIMIZU, MIZUNO YOUICHI et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-
[13] S GAO L, Z GUO H, J ZHANG S. 1-
[14] H QI, Z ZUO R, W XIE A et al. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. J. Eur. Ceram. Soc., 39, 3703-3709(2019).
[15] M YE J, S WANG G, F CHEN X et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-
[16] M YE J, S WANG G, F CHEN X. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. J. Materiomics, 7, 339-346(2021).
[17] L ZHAO, Q LIU, J ZHANG S. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C, 4, 8380-8384(2016).
[18] A WOLSKA, A MOLAK, K LAWNICZAK-JABLONSKA. XANES Mn K edge in NaNbO3 based ceramics doped with Mn and Bi ions. Phys. Scripta, 2005, 989-991(2005).
[19] M CHAO L, D HOU Y, P ZHENG M. NaNbO3 nanoparticles: Rapid mechanochemical synthesis and high densification behavior. J. Alloy. Compd., 695, 3331-3338(2017).
[20] L DONG, X DONG G, Q ZHANG. Dielectric properties of Fe2O3-doped MgTiO3-CaTiO3 microwave ceramics. Materials Review, 30, 47-50(2016).
[21] X WANG, R REN P, D REN. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength. Ceram. Int., 47, 3699-3705(2020).
[22] B KANG H, Y CHANG J, K KOH. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Inter., 6, 10576-10582(2014).
[23] B YANG, J BIAN, L WANG et al. Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering. Phys. Chem. Chem. Phys., 21, 11697-11704(2019).
[24] ALLEN GEOFFREY C, BUTLER IAN S, KIRBY COLIN. Characterization of ferrocene and (η 6-benzene) tricarbonylchromium complexes by X-ray photoelectron spectroscopy. Inorg. Chim. Acta, 134, 289-292(1987).
[25] D YAN X, P ZHENG M, K ZHU M. Enhanced electrical resistivity and mechanical properties in BCTZ-based composite ceramic. J. Adv. Dielect., 9, 1950036(2019).
[26] B JIANG C, C MA, H LUO K. Piezoelectric and ferroelectric properties of Na0.5Bi4.5Ti4O15-BaTiO3 composite ceramics with Mg doping. J. Adv. Dielect., 9, 1950005(2019).
[27] H HU, P JIANG X, C CHEN. Influence of Ce 3+ substitution on the structure and electrical characteristics of bismuth-layer Na0.5Bi8.5Ti7O27 ceramics. J. Inorg. Mater., 34, 997-1003(2019).
[28] SHANNON ROBERT D, FISCHER REINHARD X. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B, 73, 235111(2006).
[29] T YANG L, X KONG, F LI. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 102, 72-108(2019).
[30] T WANG, H WANG Y, B YANG H et al. Dielectric and energy storage property of BaTiO3-ZnNb2O6 ceramics. J. Inorg. Mater., 35, 431-438(2019).
[31] H DU J, Y LI, N SUN N et al. Dielectric, ferroelectric and high energy storage behavior of (1-
Get Citation
Copy Citation Text
Fen YE, Xiangping JIANG, Yunjing CHEN, Xiaokun HUANG, Renfen ZENG, Chao CHEN, Xin NIE, Hao CHENG.
Category: RESEARCH ARTICLE
Received: Jun. 28, 2021
Accepted: --
Published Online: Jan. 10, 2023
The Author Email: JIANG Xiangping (jiangxp64@163.com), CHENG Hao (smallone.1@163.com)