Journal of Inorganic Materials, Volume. 37, Issue 5, 499(2022)
[1] QI H, ZUO R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency[J]. J. Mater. Chem. A, 7, 3971-3978(2019).
[2] LIU Z Y, LU J S, MAO Y Q et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases[J]. J. Eur. Ceram. Soc., 38, 4939-4945(2018).
[3] ZHU L F, YAN Y K, LENG H Y. Energy-storage performance of NaNbO3 based multilayered capacitors[J]. J. Mater. Chem. C, 9, 7950-7957(2021).
[4] SHIMIZU H, GUO H Z, REYES-LILLO S E. Lead-free antiferroelectric:
[5] LIU X, ZHAO Y Y. Research progress of antiferroelectric energy storage ceramics[J]. Electronic Components and Materials, 39, 55-66(2020).
[6] MATTHIAS B T. New ferroelectric crystals[J]. Physical Review, 75, 1771(1949).
[7] VOUSDEN P. The non-polarity of sodium niobate[J]. Acta. Cryst., 5, 690(1952).
[8] ZHANG H F, YANG B, YAN H X et al. Isolation of a ferroelectric intermediate phase in antiferroelectric dense sodium niobate ceramics[J]. Acta Mater., 179, 255-261(2019).
[9] GUO H Z, SHIMIZU H, CLIVE A RANDALL. Microstructural evolution in NaNbO3-based antiferroelectrics[J]. J. Appl. Phys., 118, 174107(2015).
[10] GUO H Z, SHIMIZU H, CLIVE A RANDALL. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics[J]. Appl. Phys. Lett., 107, 112904(2015).
[11] GAO L S, GUO H Z, ZHANG S J. Stabilized antiferroelectricity in
[12] GUO H Z, SHIMIZU H, YOUICHI MIZUNO et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-
[13] GAO L S, GUO H Z, ZHANG S J. 1-
[14] QI H, ZUO R Z, XIE A W et al. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops[J]. J. Eur. Ceram. Soc., 39, 3703-3709(2019).
[15] YE J M, WANG G S, CHEN X F et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-
[16] YE J M, WANG G S, CHEN X F. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics[J]. J. Materiomics, 7, 339-346(2021).
[17] ZHAO L, LIU Q, ZHANG S J. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification[J]. J. Mater. Chem. C, 4, 8380-8384(2016).
[18] WOLSKA A, MOLAK A, LAWNICZAK-JABLONSKA K. XANES Mn K edge in NaNbO3 based ceramics doped with Mn and Bi ions[J]. Phys. Scripta, 2005, 989-991(2005).
[19] CHAO L M, HOU Y D, ZHENG M P. NaNbO3 nanoparticles: Rapid mechanochemical synthesis and high densification behavior[J]. J. Alloy. Compd., 695, 3331-3338(2017).
[20] DONG L, DONG G X, ZHANG Q. Dielectric properties of Fe2O3-doped MgTiO3-CaTiO3 microwave ceramics[J]. Materials Review, 30, 47-50(2016).
[21] WANG X, REN P R, REN D. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength[J]. Ceram. Int., 47, 3699-3705(2020).
[22] KANG H B, CHANG J Y, KOH K. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators[J]. ACS Appl. Mater. Inter., 6, 10576-10582(2014).
[23] YANG B, BIAN J, WANG L et al. Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering[J]. Phys. Chem. Chem. Phys., 21, 11697-11704(2019).
[24] GEOFFREY C ALLEN, IAN S BUTLER, COLIN KIRBY. Characterization of ferrocene and (η 6-benzene) tricarbonylchromium complexes by X-ray photoelectron spectroscopy[J]. Inorg. Chim. Acta, 134, 289-292(1987).
[25] YAN X D, ZHENG M P, ZHU M K. Enhanced electrical resistivity and mechanical properties in BCTZ-based composite ceramic[J]. J. Adv. Dielect., 9, 1950036(2019).
[26] JIANG C B, MA C, LUO K H. Piezoelectric and ferroelectric properties of Na0.5Bi4.5Ti4O15-BaTiO3 composite ceramics with Mg doping[J]. J. Adv. Dielect., 9, 1950005(2019).
[27] HU H, JIANG X P, CHEN C. Influence of Ce 3+ substitution on the structure and electrical characteristics of bismuth-layer Na0.5Bi8.5Ti7O27 ceramics[J]. J. Inorg. Mater., 34, 997-1003(2019).
[28] ROBERT D SHANNON, REINHARD X FISCHER. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides[J]. Phys. Rev. B, 73, 235111(2006).
[29] YANG L T, KONG X, LI F. Perovskite lead-free dielectrics for energy storage applications[J]. Prog. Mater. Sci., 102, 72-108(2019).
[30] WANG T, WANG Y H, YANG H B et al. Dielectric and energy storage property of BaTiO3-ZnNb2O6 ceramics[J]. J. Inorg. Mater., 35, 431-438(2019).
[31] DU J H, LI Y, SUN N N et al. Dielectric, ferroelectric and high energy storage behavior of (1-
Get Citation
Copy Citation Text
Fen YE, Xiangping JIANG, Yunjing CHEN, Xiaokun HUANG, Renfen ZENG, Chao CHEN, Xin NIE, Hao CHENG.
Category: RESEARCH ARTICLE
Received: Jun. 28, 2021
Accepted: --
Published Online: Jan. 10, 2023
The Author Email: Xiangping JIANG (jiangxp64@163.com), Hao CHENG (smallone.1@163.com)