PhotoniX, Volume. 2, Issue 1, 22(2021)

Intelligent designs in nanophotonics: from optimization towards inverse creation

Ning Wang1...2, Wei Yan1,2, Yurui Qu3, Siqi Ma2,4, Stan Z. Li2,4,*, and Min Qiu12,** |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou Zhejiang Province, China
  • 2Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou Zhejiang Province, China
  • 3Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, 53706 WI, USA
  • 4AI lab, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou Zhejiang Province, China
  • show less
    References(172)

    [13] [13] Russell S, Norvig P. Artificial Intelligence: a Modern Approach, 4th Ed. Hoboken: Pearson Education, Inc.; 2020.

    [14] [14] corporation N. Difference Between AI, Machine Learning, and Deep Learning. 2021. https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/. Accessed 28 June 2021.

    [20] [20] Jiang J, Chen M, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater. 2020:1–22.

    [49] [49] Christiansen RE, Sigmund O. A tutorial for inverse design in photonics by topology optimization. arXiv preprint arXiv:2008.11816. 2020.

    [59] [59] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep Learning vol. 1: MIT press Cambridge; 2016.

    [60] [60] Bendsoe MP, Sigmund O. Topology Optimization: Theory, Methods, and Applications. Berlin: Springer; 2013.

    [63] [63] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95-international Conference on Neural Networks, vol. 4. IEEE: 1995. p. 1942–48.

    [64] [64] Shi Y, et al. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1. IEEE: 2001. p. 81–86.

    [68] [68] Doersch C. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908. 2016.

    [78] [78] Banerji S, Meem M, Majumder A, Sensale-Rodriguez B, Menon R. Imaging over an unlimited bandwidth with a single diffractive surface. arXiv preprint arXiv:1907.06251. 2019.

    [82] [82] Lin Z, Johnson SG. Topology-optimized nanostructures for high-na lensing optics. In: 2020 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE: 2020. p. 1–2.

    [111] [111] Zangeneh-Nejad F, Sounas DL, Alù A, Fleury R. Analogue computing with metamaterials. Nat Rev Mater. 2020:1–19.

    [121] [121] Hamerly R, Bernstein L, Sludds A, Soljačić M, Englund D. Large-scale optical neural networks based on photoelectric multiplication. Phys Rev X. 2019; 9(2):021032.

    [130] [130] Rahman MSS, Li J, Mengu D, Rivenson Y, Ozcan A. Ensemble learning of diffractive optical networks. Light: Sci Appl. 2021; 10(1):1–13.

    [134] [134] Wang H, Piestun R. Azimuthal multiplexing 3d diffractive optics. Sci Rep. 2020; 10(1):1–9.

    [157] [157] Wiecha PR, Arbouet A, Girard C, Muskens OL. Deep learning in nano-photonics: inverse design and beyond. arXiv preprint arXiv:2011.12603. 2020.

    [170] [170] Camacho M, Edwards B, Engheta N. A single inverse-designed photonic structure that performs parallel computing. arXiv preprint arXiv:2009.01187. 2020.

    [171] [171] Zhou T, Lin X, Wu J, Chen Y, Xie H, Li Y, Fan J, Wu H, Fang L, Dai Q. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat Photon. 2021:1–7.

    Tools

    Get Citation

    Copy Citation Text

    Ning Wang, Wei Yan, Yurui Qu, Siqi Ma, Stan Z. Li, Min Qiu. Intelligent designs in nanophotonics: from optimization towards inverse creation[J]. PhotoniX, 2021, 2(1): 22

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 29, 2021

    Accepted: Sep. 13, 2021

    Published Online: Jul. 10, 2023

    The Author Email: Li Stan Z. (stan.zq.li@westlake.edu.cn), Qiu Min (qiu_lab@westlake.edu.cn)

    DOI:10.1186/s43074-021-00044-y

    Topics