PhotoniX, Volume. 2, Issue 1, 22(2021)
Intelligent designs in nanophotonics: from optimization towards inverse creation
[13] [13] Russell S, Norvig P. Artificial Intelligence: a Modern Approach, 4th Ed. Hoboken: Pearson Education, Inc.; 2020.
[14] [14] corporation N. Difference Between AI, Machine Learning, and Deep Learning. 2021. https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/. Accessed 28 June 2021.
[20] [20] Jiang J, Chen M, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater. 2020:1–22.
[49] [49] Christiansen RE, Sigmund O. A tutorial for inverse design in photonics by topology optimization. arXiv preprint arXiv:2008.11816. 2020.
[59] [59] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep Learning vol. 1: MIT press Cambridge; 2016.
[60] [60] Bendsoe MP, Sigmund O. Topology Optimization: Theory, Methods, and Applications. Berlin: Springer; 2013.
[63] [63] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95-international Conference on Neural Networks, vol. 4. IEEE: 1995. p. 1942–48.
[64] [64] Shi Y, et al. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1. IEEE: 2001. p. 81–86.
[68] [68] Doersch C. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908. 2016.
[78] [78] Banerji S, Meem M, Majumder A, Sensale-Rodriguez B, Menon R. Imaging over an unlimited bandwidth with a single diffractive surface. arXiv preprint arXiv:1907.06251. 2019.
[82] [82] Lin Z, Johnson SG. Topology-optimized nanostructures for high-na lensing optics. In: 2020 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE: 2020. p. 1–2.
[111] [111] Zangeneh-Nejad F, Sounas DL, Alù A, Fleury R. Analogue computing with metamaterials. Nat Rev Mater. 2020:1–19.
[121] [121] Hamerly R, Bernstein L, Sludds A, Soljačić M, Englund D. Large-scale optical neural networks based on photoelectric multiplication. Phys Rev X. 2019; 9(2):021032.
[130] [130] Rahman MSS, Li J, Mengu D, Rivenson Y, Ozcan A. Ensemble learning of diffractive optical networks. Light: Sci Appl. 2021; 10(1):1–13.
[134] [134] Wang H, Piestun R. Azimuthal multiplexing 3d diffractive optics. Sci Rep. 2020; 10(1):1–9.
[157] [157] Wiecha PR, Arbouet A, Girard C, Muskens OL. Deep learning in nano-photonics: inverse design and beyond. arXiv preprint arXiv:2011.12603. 2020.
[170] [170] Camacho M, Edwards B, Engheta N. A single inverse-designed photonic structure that performs parallel computing. arXiv preprint arXiv:2009.01187. 2020.
[171] [171] Zhou T, Lin X, Wu J, Chen Y, Xie H, Li Y, Fan J, Wu H, Fang L, Dai Q. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat Photon. 2021:1–7.
Get Citation
Copy Citation Text
Ning Wang, Wei Yan, Yurui Qu, Siqi Ma, Stan Z. Li, Min Qiu. Intelligent designs in nanophotonics: from optimization towards inverse creation[J]. PhotoniX, 2021, 2(1): 22
Category: Research Articles
Received: Apr. 29, 2021
Accepted: Sep. 13, 2021
Published Online: Jul. 10, 2023
The Author Email: Li Stan Z. (stan.zq.li@westlake.edu.cn), Qiu Min (qiu_lab@westlake.edu.cn)