Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 945(2024)
Research Progress on High-Entropy Transparent Ceramics
[1] [1] COBLE R L. Transparent alumina and method of preparation [P]. US Patent, 3026210. 1962-3-20.
[2] [2] GOLDSTEIN A, KRELL A. Transparent ceramics at 50: progress made and further prospects[J]. J Am Ceram Soc, 2016, 99(10): 3173-3197.
[3] [3] QI Jianqi, FENG Zhao, HUANG Xu, et al. Adv Ceram, 2020, 41(4): 1005-1198.
[4] [4] YI Hailan, JIANG Zhijun, MAO Xiaojian, et al. J Inorg Mater, 2010, 25(8): 795-800.
[5] [5] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
[6] [6] CHEN X Q, WU Y Q. High-entropy transparent fluoride laser ceramics[J]. J Am Ceram Soc, 2020, 103(2): 750-756.
[7] [7] ZHANG G R, MILISAVLJEVIC I, GRZESZKIEWICZ K, et al. New optical ceramics: high-entropy sesquioxide X2O3 multi-wavelength emission phosphor transparent ceramics[J]. J Eur Ceram Soc, 2021, 41(6): 3621-3628.
[8] [8] ZHANG G R, MILISAVLJEVIC I, ZYCH E, et al. High-entropy sesquioxide X2O3 upconversion transparent ceramics[J]. Scripta Mater, 2020, 186: 19-23.
[9] [9] ZHANG K B, LI W W, ZENG J J, et al. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder[J]. J Alloy Compd, 2020, 817: 153328.
[10] [10] HAN W H, YE Y C, LU K L, et al. High-entropy transparent (Y0.2La0.2Gd0.2Yb0.2Dy0.2)2Zr2O7 ceramics as novel phosphor materials with multi-wavelength excitation and emission properties[J]. J Eur Ceram Soc, 2023, 43(1): 143-149.
[11] [11] ZENG J J, ZHANG K B, ZENG L, et al. Preparation of multicomponent A2Zr2O7 transparent ceramics by vacuum sintering[J]. Ceram Int, 2022, 48(22): 32946-32954.
[12] [12] JI Yaming, JIANG Danyu, FENG Tao, et al. J Inorg Mater, 2004, 19(2): 275-282.
[13] [13] WANG Yuansheng, CHEN Daqin. Laser Opt P, 2009, 46(3): 13-20.
[14] [14] ARMANI C J, RUGGLES-WRENN M B, HAY R S, et al. Creep of polycrystalline yttrium aluminum garnet (YAG) at elevated temperature in air and in steam[J]. Mat Sci Eng A, 2014, 589: 125-131.
[15] [15] APETZ R, BRUGGEN M P B. Transparent alumina: a light-scattering model[J]. J Am Ceram Soc, 2003, 86(3): 480-486.
[16] [16] HAN Dan. Preparation and properties of transparent spinel ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018.
[17] [17] FU Ping. Study of preparation, optical and microwave dielectric properties of spinel-based transparent ceramics[D]. Wuhan: Huazhong University of Science and Technology, 2014.
[18] [18] BONNEFONT G, FANTOZZI G, TROMBERT S, et al. Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders[J]. Ceram Int, 2012, 38(1): 131-140.
[19] [19] XIAO Z H, YU S J, LI Y M, et al. Materials development and potential applications of transparent ceramics: A review[J]. Mat Sci Eng R, 2020, 139: 100518.
[20] [20] ZHANG R Z, REECE M J. Review of high entropy ceramics: Design, synthesis, structure and properties[J]. J Mater Chem A, 2019, 7(39): 22148-22162.
[21] [21] ZHANG Y. High Entropy Materials[M].
[22] [22] XIE Hongxiang, XIANG Houzheng, MA Ruiqi, et al. Mater Rep, 2022, 36(6): 61-68.
[23] [23] ZHAN Zaiji, CHENG Tingxin, LI Guowei, et al. J Yanshan Univ, 2022, 46(5): 377-384.
[24] [24] XUE Y, ZHAO X Q, AN Y L, et al. High-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Ce2O7: A potential thermal barrier material with improved thermo-physical properties[J]. J Adv Ceram, 2022, 11(4): 615-628.
[25] [25] XU L, WANG H J, SU L, et al. A new class of high-entropy fluorite oxides with tunable expansion coefficients, low thermal conductivity and exceptional sintering resistance[J]. J Eur Ceram Soc, 2021, 41(13): 6670-6676.
[26] [26] ZHOU L, LIU J X, TU T Z, et al. Fast grain growth phenomenon in high-entropy ceramics: A case study in rare-earth hexaaluminates[J]. J Adv Ceram, 2023, 12(1): 111-121.
[27] [27] LIN F L, LIU B, HU C C, et al. Novel high-entropy microwave dielectric ceramics Sr(La0.2Nd0.2Sm0.2Eu0.2Gd0.2)AlO4 with excellent temperature stability and mechanical properties[J]. J Eur Ceram Soc, 2023, 43(6): 2506-2512.
[28] [28] ZHU J T, XU J, ZHANG P, et al. Enhanced mechanical and thermal properties of ferroelastic high-entropy rare-earth-niobates[J]. Scripta Mater, 2021, 200: 113912.
[29] [29] ZHANG G R, WU Y Q. High-entropy transparent ceramics: review of potential candidates and recently studied cases[J]. Int J Appl Ceram Tec, 2022, 19(2): 644-672.
[30] [30] LI Z J, ZHANG Y W, HUANG L, et al. Nanoscale fluorescent stone: luminescent calcium fluoride nanoparticles as theranostic platforms[J]. Theranostics, 2016, 6(13): 2380-2393.
[31] [31] SOM S, SHARMA S K. Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization[J]. J Phys D Appl Phys, 2012, 45(41): 415102.
[32] [32] DAI J W, PAN Y B, XIE T F, et al. A novel (Tb0.995Ho0.005)3Al5O12 magneto-optical ceramic with high transparency and Verdet constant[J]. Scripta Mater, 2018, 150: 160-163.
[33] [33] POKHREL M, ALCOUTLABI M, MAO Y B. Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles[J]. J Alloy Compd, 2017, 693: 719-729.
[34] [34] KINTAKA Y, HAYASHI T, HONDA A, et al. Abnormal partial dispersion in pyrochlore lanthanum zirconate transparent ceramics[J]. J Am Ceram Soc, 2012, 95(9): 2899-2905.
[35] [35] GREDIN P, MORTIER M. Optical properties of fluoride transparent ceramics[M]//Photonic and electronic properties of fluoride materials. Elsevier, 2016: 65-87.
[36] [36] HATCH S E, PARSONS W F, WEAGLEY R J. Hot-pressed polycrystalline CaF2: Dy2+ laser[J]. Appl Phys Lett, 1964, 5(8): 153-154.
[37] [37] CARNALL JR E, HATCH S E, LADD L S, et al. Magnesium fluoride optical element: US3365271[P]. 1968-01-23.
[38] [38] YANG Y, et al. Fabrication and upconversion luminescence properties of Er: SrF2 transparent ceramics compared with Er: CaF2. Ceram Int, 2021, 47(12): 17139-17146.
[39] [39] NAKAMURA F, KATO T, OKADA G, et al. Scintillation, TSL and RPL properties of MgF2 transparent ceramic and single crystal[J]. Ceram Int, 2017, 43(9): 7211-7215.
[40] [40] LI W W, MEI B C, SONG J H, et al. Yb3+ doped CaF2 transparent ceramics by spark plasma sintering[J]. J Alloy Compd, 2016, 660: 370-374.
[41] [41] LIU Z D, MEI B C, SONG J H, et al. Microstructure and optical properties of hot-pressed Er: CaF2 transparent ceramics[J]. J Alloy Compd, 2015, 646: 760-765.
[42] [42] YI G Q, LI W W, SONG J H, et al. Structural, spectroscopic and thermal properties of hot-pressed Nd: (Ca0.94Gd0.06)F2.06 transparent ceramics[J]. J Eur Ceram Soc, 2018, 38(9): 3240-3245.
[43] [43] LI J L, CHEN X Q, TANG L F, et al. Fabrication and properties of transparent Nd-doped BaF2 ceramics. J AM CERAM SOC. 2019, 102(1):178-184.
[44] [44] ROY S, LINGERTAT H, BRECHER C, et al. Optical properties of anisotropic polycrystalline Ce+3 activated LSO[J]. Opt Mater, 2013, 35(5): 827-832.
[45] [45] CHAIM R, LEVIN M, SHLAYER A, et al. Sintering and densification of nanocrystalline ceramic oxide powders: a review[J]. Adv Appl Ceram, 2008, 107(3): 159-169.
[46] [46] WANG P, YANG M J, ZHANG S, et al. Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil[J]. J Eur Ceram Soc, 2017, 37(13): 4103-4107.
[47] [47] LIU B, LIN F L, HU C C, et al. Novel transparent LiF ceramics enabled by cold sintering at 150 ℃[J]. Scripta Mater, 2022, 220: 114917.
[48] [48] GAO J E, XIA Z G, DING Q, et al. Cold Sintering of Highly Transparent Calcium Fluoride Nanoceramic as a Universal Platform for High-Power Lighting[J]. Adv Funct Mater, 2023: 2302088.
[49] [49] SAMUEL P, ISHIZAWA H, EZURA Y, et al. Spectroscopic analysis of Eu doped transparent CaF2 ceramics at different concentration[J]. Opt Mater, 2011, 33(5): 735-737.
[50] [50] ISHIZAWA H. CaF2 translucent ceramics and manufacturing method of CaF2 translucent ceramics [P]. US Patent, 9586867. 2017-3-7.
[51] [51] KITAJIMA S, SHIRAKAWA A, UEDA K, et al. Femtosecond Mode-locked Yb3+-doped CaF2-LaF3 Ceramic Laser[C]//The European Conference on Lasers and Electro-Optics. Optica Publishing Group, 2017.
[52] [52] XIE X Y, MEI B C, SONG J H, et al. Fabrication and spectral properties of Nd, La: CaF2 transparent ceramics[J]. Opt Mater, 2018, 76: 111-116.
[53] [53] LI W W, LIU Z D, ZHOU Z W, et al. Characterizations of a hot-pressed Er and Y codoped CaF2 transparent ceramic[J]. J Eur Ceram Soc, 2016, 36(14): 3481-3486.
[54] [54] CHEN X Q, WU Y Q. High concentration Ce3+ doped BaF2 transparent ceramics[J]. J Alloy Compd, 2020, 817: 153075.
[55] [55] YIN D L, WANG J, WANG Y, et al. Fabrication of Er: Y2O3 transparent ceramics for 2.7?μm mid-infrared solid-state lasers[J]. J Eur Ceram Soc, 2020, 40(2): 444-448.
[56] [56] WANG J, MA J, ZHANG J, et al. Yb: Y2O3 transparent ceramics processed with hot isostatic pressing[J]. Opt Mater, 2017, 71: 117-120.
[57] [57] GHEORGHE C, LUPEI A, LUPEI V, et al. Intensity parameters of Tm3+ doped Sc2O3 transparent ceramic laser material[J]. Opt Mater, 2011, 33(3): 501-505.
[58] [58] YANAGIDA T, FUJIMOTO Y, KUROSAWA S, et al. Ultrafast transparent ceramic scintillators using the Yb3+ charge transfer luminescence in RE2O3 host[J]. Appl Phys Express, 2011, 4(12): 126402.
[59] [59] SHI Y, CHEN Q W, SHI J L. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics[J]. Opt Mater, 2009, 31(5): 729-733.
[60] [60] ZHOU J, CHEN Y Q, LEI R S, et al. Excellent photoluminescence and temperature sensing properties in Ho3+/Yb3+ codoped (Y0.88La0.09Zr0.03)2O3 transparent ceramics[J]. Ceram Int, 2019, 45(6): 7696-7702.
[61] [61] WU Y, et al. Preparation and properties of novel Tb3Sc2Al3O12 (TSAG) magneto-optical transparent ceramic. J Eur Ceram Soc, 2021, 41(16): 195-201.
[62] [62] YUAN J H, YAO B Q, DAI T Y, et al. High peak power, high-repetition rate passively Q-switching of a holmium ceramic laser[J]. Laser Phys, 2020, 30(3): 035004.
[63] [63] LIU W P, KOU H M, LI J, et al. Transparent Yb: (LuxSc1?x)2O3 ceramics sintered from carbonate co-precipitated powders[J]. Ceram Int, 2015, 41(5): 6335-6339.
[64] [64] GRESKOVICH C, CHERNOCH J P. Polycrystalline ceramic lasers[J]. J Appl Phys, 1973, 44(10): 4599-4606.
[65] [65] LU B, LI J G, SUN X D, et al. Fabrication and Characterization of Transparent (Y0.98-xTb0.02Eux)2O3Ceramics with Color-Tailorable Emission[J]. J Am Ceram Soc, 2015, 98(12): 3877-3883.
[66] [66] WANG L R, LU B, LIU X, et al. Fabrication and upconversion luminescence of novel transparent Er2O3 ceramics[J]. J Eur Ceram Soc, 2020, 40(4): 1767-1772.
[67] [67] BALABANOV S S, PERMIN D A, ROSTOKINA E Y, et al. Characterizations of REE: Tb2O3 magneto-optical ceramics[J]. Phys Status Solidi B, 2020, 257(8): 1900474.
[68] [68] ZHU L L, PARK Y J, GAN L, et al. Effects of ZrO2-La2O3 co-addition on the microstructural and optical properties of transparent Y2O3 ceramics[J]. Ceram Int, 2017, 43(11): 8525-8530.
[69] [69] WANG J, YIN D L, MA J, et al. Pump laser induced photodarkening in ZrO2-doped Yb: Y2O3 laser ceramics[J]. J Eur Ceram Soc, 2019, 39(2/3): 635-640.
[70] [70] LU S Z, YANG Q H, WANG Y G, et al. Luminescent properties of Eu: Y1.8La0.2O3 transparent ceramics for potential white LED applications[J]. Opt Mater, 2013, 35(4): 718-721.
[71] [71] SERIVALSATIT K, KOKUOZ B Y, KOKUOZ B, et al. Nanograined highly transparent yttria ceramics[J]. Opt Lett, 2009, 34(7): 1033-1035.
[72] [72] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser[J]. Opt Lett, 2008, 33(12): 1380-1382.
[73] [73] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator[J]. Opt Express, 2009, 17(5): 3353-3361.
[74] [74] BAGAYEV S N, OSIPOV V V, SHITOV V A, et al. Fabrication and optical properties of Y2O3-based ceramics with broad emission bandwidth[J]. J Eur Ceram Soc, 2012, 32(16): 4257-4262.
[75] [75] BALABANOV S, FILOFEEV S, IVANOV M, et al. Fabrication and characterizations of holmium oxide based magneto-optical ceramics[J]. Opt Mater, 2020, 101: 109741.
[76] [76] LU B, WU S F, CHENG H M, et al. Binary transparent (Ho1-xDyx)2O3 ceramics: Compositional influences on particle properties, sintering kinetics and Faraday magneto-optical effects[J]. J Eur Ceram Soc, 2021, 41(4): 2826-2833.
[77] [77] DJENADIC R, SARKAR A, CLEMENS O, et al. Multicomponent equiatomic rare earth oxides[J]. Mater Res Lett, 2017, 5(2): 102-109.
[78] [78] TSENG K P, YANG Q, MCCORMACK S J, et al. High-entropy, phase-constrained, lanthanide sesquioxide[J]. J Am Ceram Soc, 2020, 103(1): 569-576.
[79] [79] IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers[J]. J Am Ceram Soc, 1995, 78(4): 1033-1040.
[80] [80] BEIL K, FREDRICH-THORNTON S T, TELLKAMP F, et al. Thermal and laser properties of Yb: LuAG for kW thin disk lasers[J]. Opt Express, 2010, 18(20): 20712-20722.
[81] [81] LI J, CHEN F, LIU W B, et al. Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics[J]. J Eur Ceram Soc, 2012, 32(11): 2971-2979.
[82] [82] LIU W B, ZENG Y P, LI J, et al. Sintering and laser behavior of composite YAG/Nd: YAG/YAG transparent ceramics[J]. J Alloy Compd, 2012, 527: 66-70.
[83] [83] ZHANG G R, CARLONI D, WU Y Q. 3D printing of transparent YAG ceramics using copolymer-assisted slurry[J]. Ceram Int, 2020, 46(10): 17130-17134.
[84] [84] SOKOL M, KALABUKHOV S, KASIYAN V, et al. Functional properties of Nd: YAG polycrystalline ceramics processed by high-pressure spark plasma sintering (HPSPS)[J]. J Am Ceram Soc, 2016, 99(3): 802-807.
[85] [85] MA C Y, TANG F, CHEN J D, et al. Spectral, energy resolution properties and green-yellow LEDs applications of transparent Ce3+: Lu3Al5O12 ceramics[J]. J Eur Ceram Soc, 2016, 36(16): 4205-4213.
[86] [86] ZHENG R L, DING J Y, ZHANG Q, et al. Dy3+-doped Y3Al5O12 transparent ceramic for high efficiency ultraviolet excited single-phase white-emitting phosphor[J]. J Am Ceram Soc, 2019, 102(6): 3510-3516.
[87] [87] LI X Y, LIU Q, LIU X, et al. Novel (Tb0.99Ce0.01)3Ga5O12 magneto-optical ceramics for Faraday isolators[J]. Scripta Mater, 2020, 177: 137-140.
[88] [88] ZHONG Y J, XIANG W S, HE L T, et al. Directionally solidified Al2O3/(Y0.2Er0.2Yb0.2Ho0.2Lu0.2)3Al5O12 eutectic high-entropy oxide ceramics with well-oriented structure, high hardness, and low thermal conductivity[J]. J Eur Ceram Soc, 2021, 41(14): 7119-7129.
[89] [89] CHEN H, ZHAO Z F, XIANG H M, et al. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material[J]. J Mater Sci Technol, 2020, 48: 57-62.
[90] [90] ZHAO S J, LI N, SUN L P, et al. A novel high-entropy cathode with the A2BO4-type structure for solid oxide fuel cells[J]. J Alloy Compd, 2022, 895: 162548.
[91] [91] ZHIVULIN V E, TROFIMOV E A, GUDKOVA S A, et al. Polysubstituted high-entropy[LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 perovskites: correlation of the electrical and magnetic properties[J]. Nanomaterials, 2021, 11(4): 1014.
[92] [92] VINNIK D A, ZHIVULIN V E, TROFIMOV E A, et al. A-site cation size effect on structure and magnetic properties of Sm(Eu, Gd)Cr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 high-entropy solid solutions[J]. Nanomaterials, 2021, 12(1): 36.
[93] [93] BANERJEE R, CHATTERJEE S, RANJAN M, et al. High-entropy perovskites: An emergent class of oxide thermoelectrics with ultralow thermal conductivity[J]. ACS Sustainable Chem Eng, 2020, 8(46): 17022-17032.
[94] [94] ZHAO Z F, CHEN H, XIANG H M, et al. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites[J]. J Mater Sci Technol, 2020, 47: 45-51.
[95] [95] PU Y P, ZHANG Q W, LI R, et al. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic[J]. Appl Phys Lett, 2019, 115(22): 223901.
[96] [96] FANG Z, TIAN X, ZHENG F J, et al. Enhanced piezoelectric properties of Sm3+-modified PMN-PT ceramics and their application in energy harvesting[J]. Ceram Int, 2022, 48(6): 7550-7556.
[97] [97] FANG Z, JIANG X D, TIAN X E, et al. Ultratransparent PMN-PT Electro-Optic Ceramics and Its Application in Optical Communication[J]. Adv Opt Mater, 2021, 9(13): 2002139.
[98] [98] JIANG H, ZOU Y K, CHEN Q, et al. Transparent electro-optic ceramics and devices[C]//Photonics Asia. Proc SPIE 5644, Optoelectronic Devices and Integration, Beijing, China. 2005, 5644: 380-394.
[99] [99] KOSEC M, BOBNAR V, HROVAT M, et al. New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution[J]. J Mater Res, 2004, 19(6): 1849-1854.
[100] [100] LI F L, KWOK K W. Fabrication of transparent electro-optic (K0.5Na0.5)1?xLixNb1?xBixO3 lead-free ceramics[J]. J Eur Ceram Soc, 2013, 33(1): 123-130.
[101] [101] JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides[J]. Scripta Mater, 2018, 142: 116-120.
[102] [102] SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides[J]. J Eur Ceram Soc, 2018, 38(5): 2318-2327.
[103] [103] Nie, S., Wu, L., Zhao, L. et al. Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles. Nano Res. 15, 4867-4872 (2022).
[104] [104] YAN J H, WANG D, ZHANG X Y, et al. A high-entropy perovskite titanate lithium-ion battery anode[J]. J Mater Sci, 2020, 55: 6942-6951.
[105] [105] OKEJIRI F, ZHANG Z H, LIU J X, et al. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method[J]. ChemSusChem, 2020, 13(1): 111-115.
[106] [106] COREY Z J, LU P, ZHANG G R, et al. Structural and optical properties of high entropy (La, Lu, Y, Gd, Ce)AlO3 perovskite thin films[J]. Adv Sci, 2022, 9(29): 2202671.
[107] [107] WANG J W, ZHANG F X, LIAN J, et al. Energetics and concentration of defects in Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at high pressure[J]. Acta Mater, 2011, 59(4): 1607-1618.
[108] [108] SHIMAMURA K, ARIMA T, IDEMITSU K, et al. Thermophysical properties of rare-earth-stabilized zirconia and zirconate pyrochlores as surrogates for actinide-doped zirconia[J]. Int J Thermophys, 2007, 28: 1074-1084.
[109] [109] BLANCHARD P E R, CLEMENTS R, KENNEDY B J, et al. Does local disorder occur in the pyrochlore zirconates?[J]. Inorg Chem, 2012, 51(24): 13237-13244.
[110] [110] WAN C L, QU Z X, DU A B, et al. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7[J]. Acta Mater, 2009, 57(16): 4782-4789.
[111] [111] CHAUDHRY A, CANNING A, BOUTCHKO R, et al. First-principles studies of Ce-doped RE2M2O7 (RE?=?Y, La; M?=?Ti, Zr, Hf): a class of nonscintillators[J]. J Appl Phys, 2011, 109(8): 083708.
[112] [112] SUBRAMANIAN M A, ARAVAMUDAN G, RAO G V. Oxide pyrochlores—A review[J]. Prog Solid State Ch, 1983, 15(2): 55-143.
[113] [113] RUSHTON M J D, GRIMES R W, STANEK C R, et al. Predicted pyrochlore to fluorite disorder temperature for A2Zr2O7 compositions[J]. J Mater Res, 2004, 19(6): 1603-1604.
[114] [114] WANG Z J, ZHOU G H, JIANG D Y, et al. Recent development of A2B2O7 system transparent ceramics[J]. J Adv Ceram, 2018, 7: 289-306.
[115] [115] CLARKE D R, PHILLPOT S R. Thermal barrier coating materials[J]. Mater Today, 2005, 8(6): 22-29.
[116] [116] ZHANG A Y, Lü M K, YANG Z S, et al. Systematic research on RE2Zr2O7 (RE = La, Nd, Eu and Y) nanocrystals: Preparation, structure and photoluminescence characterization[J]. Solid State Sci, 2008, 10(1): 74-81.
[117] [117] TROJAN-PIEGZA J, ZYCH E, KOSI?SKA M. Fabrication and spectroscopic properties of nanocrystalline La2Hf2O7: Pr[J]. Radiat Meas, 2010, 45(3/6): 432-434.
[118] [118] EBERMAN K W, WUENSCH B J, JORGENSEN J D. Order-disorder transformations induced by composition and temperature change in (SczYb1?z)2Ti2O7 pyrochlores, prospective fuel cell materials[J]. Solid State Ionics, 2002, 148(3/4): 521-526.
[119] [119] KIM N, GREY C P. 17O MAS NMR study of the oxygen local environments in the anionic conductors Y2(B1?xB’x)2O7(B, B’=Sn, Ti, Zr)[J]. J Solid State Chem, 2003, 175(1): 110-115.
[120] [120] UNO M, KOSUGA A, OKUI M, et al. Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln = La, Ce, Nd and Sm)[J]. J Alloy Compd, 2006, 420(1/2): 291-297.
[121] [121] JI Y M, JIANG D Y, FEN T, et al. Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders[J]. Mater Res Bull, 2005, 40(3): 553-559.
[122] [122] YE Y C, LU K L, QI J Q. Developing smart temperature sensing window based on highly transparent rare-earth doped yttrium zirconate ceramics[J]. ACS Appl Mater Interfaces, 2022, 14(34): 39072-39080.
[123] [123] LU K L, YE Y C, HAN W H, et al. Defect elimination to enhance photoluminescence and optical transparency of Pr-doped ceramics for self-calibrated temperature feedback windows[J]. J Adv Ceram, 2023, 12(4): 681-694.
[124] [124] CHEN Y, YE Y C, LIAO W L, et al. Fabrication and phase transition of uranium-doped LaxGd2-xZr2O7 transparent ceramics: A prospective neutron detection material[J]. J Am Ceram Soc, 2023, 106(1): 24-31.
[125] [125] WANG J, LU K L, YE Y C, et al. Samarium doped yttrium zirconate transparent ceramics for highly transparent reddish-orange light emitting applications[J]. Ceram Int, 2022, 48(23): 35050-35055.
[126] [126] RUAN D, HUANG Z Y, TANG Z, et al. Bi3+-sensitized La2Zr2O7: Er3+ transparent ceramics with efficient up/down-conversion luminescence properties for photonic applications[J]. J Phys Chem C, 2020, 124(1): 913-920.
[127] [127] WANG Z J, ZHOU G H, QIN X P, et al. Transparent La2?xGdxZr2O7 ceramics obtained by combustion method and vacuum sintering[J]. J Alloy Compd, 2014, 585: 497-502.
[128] [128] LI S R, HAN W H, LU K L, et al. Highly transparent Sm2Zr2O7 ceramics with excellent dielectric performance[J]. Appl Phys Lett, 2023, 123(4): 041904.
[129] [129] G?TSCH T, HAUSER D, K?PFLE N, et al. Complex oxide thin films: Pyrochlore, defect fluorite and perovskite model systems for structural, spectroscopic and catalytic studies[J]. Appl Surf Sci, 2018, 452: 190-200.
[130] [130] ZHANG Z M, MIDDLEBURGH S C, DE LOS REYES M, et al. Gradual Structural Evolution from Pyrochlore to Defect-Fluorite in Y2Sn2-xZrxO7: Average vs Local Structure[J]. J Phys Chem C, 2013, 117(50): 26740-26749.
[131] [131] MARAM P S, USHAKOV S V, WEBER R J K, et al. Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids-A thermodynamic perspective[J]. Sci Rep, 2018, 8(1): 10658.
[132] [132] ZHAO M, PAN W, WAN C L, et al. Defect engineering in development of low thermal conductivity materials: A review[J]. J Eur Ceram Soc, 2017, 37(1): 1-13.
[133] [133] CHE J W, WANG X Z, LIU X Y, et al. Thermal transport property in pyrochlore-type and fluorite-type A2B2O7 oxides by molecular dynamics simulation[J]. Int J Heat Mass Tran, 2022, 182: 122038.
[134] [134] LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J]. J Adv Ceram, 2019, 8(4): 576-582.
[135] [135] ZHU J T, WEI M Y, XU J, et al. Influence of order-disorder transition on the mechanical and thermophysical properties of A2B2O7 high-entropy ceramics[J]. J Adv Ceram, 2022, 11(8): 1222-1234.
[136] [136] WEI M Y, XU J E, ZHU J T, et al. Influence of size disorder parameter on the thermophysical properties of rare-earth-zirconate medium- entropy ceramics[J]. J Am Ceram Soc, 2023, 106(3): 2037-2048.
[137] [137] DEJNEKA M J, STRELTSOV A, PAL S, et al. Rare earth-doped glass microbarcodes[J]. P Natl Acad Sci USA, 2003, 100(2): 389-393.
[138] [138] WANG Z J, ZHOU G H, QIN X P, et al. Two-Phase LaLuZr2O7 Transparent Ceramic with High Transparency[J]. J Am Ceram Soc, 2014, 97(7): 2035-2037.
[139] [139] WANG Z J, ZHOU G H, QIN X P, et al. Fabrication and phase transition of La2?xLuxZr2O7 transparent ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3951-3958.
[140] [140] CHEN H, GU H, XING J J, et al. Correlated evolution of dual-phase microstructures, mutual solubilities and oxygen vacancies in transparent La2-xLuxZr2O7 ceramics[J]. J Materiomics, 2021, 7(1): 185-194.
[141] [141] POPOV V V, MENUSHENKOV A P, YAROSLAVTSEV A A, et al. Fluorite-pyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La-Lu)[J]. J Alloy Compd, 2016, 689: 669-679.
[142] [142] HAN Y, LIU X Y, ZHANG Q Q, et al. Ultra-dense dislocations stabilized in high entropy oxide ceramics[J]. Nat Commun, 2022, 13(1): 2871.
Get Citation
Copy Citation Text
HAN Wenhan, ZHU Xinghua, CHENG Gang, GUO Hao, LI Shirui, GU Bosen, LU Kailei, LU Tiecheng, YE Yucheng, QI Jianqi. Research Progress on High-Entropy Transparent Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 945
Category:
Received: Aug. 31, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Yucheng YE (1005636408@qq.com)
CSTR:32186.14.