Infrared and Laser Engineering, Volume. 53, Issue 9, 20240384(2024)
Developments and applications of intraoperative label-free microscopic imaging techniques (invited)
[2] PREETI A, SAMEER G, KULRANJAN S et al. Intra-operative frozen sections: Experience at a tertiary care centre[J]. Asian Pacific Journal of Cancer Prevention: APJCP, 17, 5057-5061(2016).
[3] PHULGIRKAR P P, DAKHURE S D. The diagnostic accuracy of frozen section compared to routine histological technique-A comparative study[J]. Int J Sci Healthcare Res, 3, 88-92(2018).
[4] YAO J, WANG L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 7, 758-778(2013).
[13] [13] YE S, ZOU J, HUANG C, et al. Rapid labelfree histological imaging of unprocessed surgical tissues via darkfield reflectance ultraviolet microscopy[J]. iScience , 2023, 26(1): 105849.
[15] WRAY P, LIN L, HU P et al. Photoacoustic computed tomography of human extremities[J]. Journal of Biomedical Optics, 24, 026003(2019).
[18] BREATHNACH A, CONCANNON E, DORAIRAJ J J et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging[J]. Journal of Medical Imaging, 5, 015004(2018).
[23] YAO J, HUANG C-H, WANG L et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror[J]. Journal of Biomedical Optics, 17, 080505(2012).
[24] IMAI T, SHI J, WONG T T W et al. High-throughput ultraviolet photoacoustic microscopy with multifocal excitation[J]. Journal of Biomedical Optics, 23, 036007(2018).
[26] [J], 13, 919-935(2020).
[34] SHU X, BECKMANN L, ZHANG H F. Visible-light optical coherence tomography: a review[J]. Journal of Biomedical Optics, 22, 121707(2017).
[37] ASSAYAG O, ANTOINE M, SIGAL-ZAFRANI B et al. Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment[J]. Technology in Cancer Research & Treatment, 13, 455-468(2014).
[38] RAMAN C V. A change of wave-length in light scattering[J]. Nature, 121, 619(1928).
[40] JI M, ORRINGER D A, FREUDIGER C W et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy[J]. Science Translational Medicine, 5, 201ra119(2013).
[41] [41] BI Y, YANG C, CHEN Y, et al. Nearresonance enhanced labelfree stimulated Raman scattering microscopy with spatial resolution near 130 nm[J]. Light : Science & Applications , 2018, 7(1): 81.
[49] HE R, XU Y, ZHANG L et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging[J]. Optica, 4, 44-47(2016).
[50] XU J, KANG D, XU M et al. Multiphoton microscopic imaging of esophagus during the early phase of tumor progression[J]. Scanning: The Journal of Scanning Microscopies, 35, 387-391(2013).
[67] [67] QIN W, QI W, JIN T, et al. In vivo al imaging with integrated ptable photoacoustic microscopy optical coherence tomography[J]. Applied Physics Letters , 2017, 111(26): 263704.
[71] [71] Shen B, Liu S, Li Y, et al. Deep learning autofluescenceharmonic microscopy[J]. Light : Science & Applications , 2022, 11(1): 76.
[73] GERCHBERG R W, SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).
[85] FAN Y, SUN J, SHU Y et al. Efficient synthetic aperture for phaseless fourier ptychographic microscopy with hybrid coherent and incoherent illumination[J]. Laser & Photonics Reviews, 17, 2370010(2023).
[93] YANG L, PARK J, MARJANOVIC M et al. Intraoperative label-free multimodal nonlinear optical imaging for point-of-procedure cancer diagnostics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-12(2021).
[94] [J], 61, 0618006-0618006-30(2024).
[99] DUBOIS A, LEVECQ O, AZIMANI H et al. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors[J]. Journal of biomedical optics, 23, 106007(2018).
[105] KUT C, CHAICHANA K L, XI J et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Science Translational Medicine, 7, 292ra100(2015).
[107] YASHIN K S, KISELEVA E B, GUBARKOVA E V et al. Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma[J], 10050, 100500Z(2017).
[111] [111] RONNEBERGER O, FISCHER P, BROX T. U: Convolutional wks f biomedical image segmentation[DBOL]. (20150518) [20240920]. https:arxiv.gabs1505.04597.
[112] [112] FUTREGA M, MILESI A, MARCINKIEWICZ M, et al. Optimized U f brain tum segmentation [C]Brainlesion: Glioma, Multiple Sclerosis, Stroke Traumatic Brain Injuries, 2022: 1529.
Get Citation
Copy Citation Text
Haojie MA, Cong ZHANG, Huazheng WU, Chengfei GUO, Shaowei JIANG. Developments and applications of intraoperative label-free microscopic imaging techniques (invited)[J]. Infrared and Laser Engineering, 2024, 53(9): 20240384
Category: Special issue—Computational optical imaging and application Ⅱ
Received: Aug. 27, 2024
Accepted: --
Published Online: Oct. 22, 2024
The Author Email: