Journal of Inorganic Materials, Volume. 34, Issue 1, 17(2019)

Removal of Radionuclides by Metal-organic Framework-based Materials

Xiang-Xue WANG... Shu-Jun YU, Xiang-Ke WANG, [in Chinese], [in Chinese] and [in Chinese] |Show fewer author(s)
Author Affiliations
  • College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
  • show less
    Figures & Tables(7)
    (1) SEM images, (2) XRD patterns, (3) FT-IR spectra, (4) N2 sorption isotherms[26] of MIL-101 and its amino derivatives, (a) MIL-101; (b) MIL-101-NH2; (c) MIL-101-ED; (d) MIL-101-DETA
    (a) UV-Vis absorption spectra of TcO4- during the anion exchange; (b) Sorption kinetics of TcO4- by SCU-101 compared with Purolite A530E and A532E; (c) Sorption isotherms of ReO4- by SCU-101, Mg-Al-LDH, and NDTB-1; (d) Effect of competing anions on the removal percentage of TcO4- by SCU-101; (e) Effect of SO42- on the anion exchange of ReO4- by SCU-101; (f) Removal percentage of ReO4- after irradiation as compared with the original SCU-101 sample[28]
    Linear pseudo-first-order kinetic (a), pseudo-second-order (b), intraparticle diffusion (c) and elovich equation (d) for adsorption of Cs+ on MOF/KNiFC and MOF/Fe3O4/KNiFC[44]; (e) Isotherm model of U(VI) adsorption on UiO-66 (inset) and GO-COOH/UiO-66 composites; (f) Langmuir model, (g) Freundlich model, and (h) Dubinin-Radushkevich model[30]
    (a) Comparison of experimental U L3-edge XANES spectra for pristine MIL-101(Cr), and different ED contents grafting ED-MIL-101(Cr) samples after the adsorption of U(VI), (b) Experimental Fourier transform of the U L3-edge EXAFS data for different samples and their corresponding fits[54]
    MD simulations on the process of uranyl sorption into SZ-2. The top (a) and side (b) view of the simulation system-1 (uranyl cation approaching along the c axis); (c) The final snapshot (at t ¼ 100 ns) of run 1 (out of total 6) to show the importance of equatorial water of uranyl cation in mediating its binding to the SZ-2 (the blue dash line indication the hydrogen bond between equatorial water molecules and the dangling hydrogen bond acceptors); (d) Time evolution of the electrostatic and vdW interaction energies of uranyl cation with SZ-2 and water; (e) The number of equatorial water molecules of uranyl cation (pink curve) and the number of hydrogen bonds formed between equatorial coordinating water molecules and other acceptors (including F and O in main framework) as the function of simulation time[58]
    • Table 1. Radionuclides adsorption on different materials

      View table
      View in Article

      Table 1. Radionuclides adsorption on different materials

      AdsorbentsRadionuclides(m/V)/(g·L-1)C0/(mg·L-1)t/hpHQmax/(mg·g-1)Interaction mechanismRef.
      MIL-101U(VI)0.410025.520Surface complexation[26]
      MIL-101-NH2U(VI)0.410025.590Surface complexation[26]
      MIL-101-EDU(VI)0.410025.5200Surface complexation[26]
      MIL-101-DETAU(VI)0.410025.5350Surface complexation[26]
      GO-COOH/UiO-66U(VI)0.59548.0188Surface complexation and ion exchange[30]
      SCU-101Re(IV)1.010000.2-217Ion exchange[28]
      SCU-100Re(IV)1.0282-541Ion exchange[29]
      UiO-66-(COOH)2Th(IV)0.410063.0350Surface complexation[31]
      MOF-808-SO4Ba(II)1.0420.15.8131Surface complexation[32]
      UiO-66-SchiffCo(II)0.11058.4256Surface complexation[33]
      FJSM-InMOFSr(II)2.51812-44Ion exchange[34]
      FJSM-InMOFCs(I)2.5903-199Ion exchange[34]
      LDO-CU(VI)0.15045.0354Surface complexation and ion exchange[35]
      CS@LDHU(VI)0.24135.0157Surface complexation[36]
      GOCo(II)0.11045.044Surface complexation[37]
      LDHU(VI)0.25064.569Surface complexation and electrostatic interaction[38]
      Na-montmorilloniteNi(II)0.51066.013Surface complexation and ion exchange[39]
      Fe3O4@TNSU(VI)0.22085.083Ion exchange[40]
    • Table 2. The main purpose, advantages and disadvantages of main adsorption characterization techniques mentioned above

      View table
      View in Article

      Table 2. The main purpose, advantages and disadvantages of main adsorption characterization techniques mentioned above

      技术主要目的优点缺点
      宏观实验反应达到平衡所需时间, 最大吸附量, 选择性和影响因素[30]非常直观得到实验结果, 方便和有效无法得到分子和原子水平上的作用机理
      XPS分析元素氧化态、元素种类和几乎所有元素的键合关系(除了H和He)定量分析、元素组成分析、高表面灵敏度检测(1~10 nm)在真空中进行的测量, 可能改变样品的性质; 在元素个数比值高于0.05%~ 1.0%条件下进行, 依赖于元素的性质
      XAFS分析氧化态、配位数、原子间键距离以及目标离子周围的离子状态[54]特定的元素, 并且总是可以检测到的, 对于研究非晶体材料是有用的; 吸附物种的分析无法区分原子能相差较小的原子(C、N、O或S、Cl、Mn或Fe)[59,60]
      FT-IR分析对微米范围内吸附行为的研究(光密度≥10-5)灵敏检测官能团和极性键[61]定性而不是定量, 灵敏度低
      DFT计算键能、键长、轨道和系统电荷密度[32,62]对局部环境的吸附描述和原子级吸附过程的描述[63]优化结构之间的能量与长时间模拟结果较不准确
      分子动力学模拟位置、势能和宏观现象的预测[64]吸附过程的快照在几秒内发生[27]长时间的计算时间, 依赖于计算的性能
    Tools

    Get Citation

    Copy Citation Text

    Xiang-Xue WANG, Shu-Jun YU, Xiang-Ke WANG, [in Chinese], [in Chinese], [in Chinese]. Removal of Radionuclides by Metal-organic Framework-based Materials[J]. Journal of Inorganic Materials, 2019, 34(1): 17

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 7, 2018

    Accepted: --

    Published Online: Feb. 4, 2021

    The Author Email:

    DOI:10.15541/jim20180211

    Topics