Semiconductor Optoelectronics, Volume. 43, Issue 3, 444(2022)

Multifunctional MicroLED Array Monolithic Integration with Luminescence and Photodetection for Display and Visible Light Communication

SHAN Xinyi... ZHU Shijie, WANG Zhou, LIN Runze, CUI Xugao, FANG Zhilai, GU Erdan and TIAN Pengfei* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [1] [1] Zhou X, Tian P, Sher C W, et al. Growth, transfer printing and colour conversion techniques towards fullcolour microLED display[J]. Progress in Quantum Electronics, 2020, 71: 100263.

    [2] [2] Zhu S, Chen X, Liu X, et al. Recent progress in and perspectives of underwater wireless optical communication[J]. Progress in Quantum Electronics, 2020, 73: 100274.

    [3] [3] Tian Pengfei, Shan Xinyi, Zhu Shijie, et al. AlGaN ultraviolet microLEDs[J]. IEEE J. of Quantum Electron., 2022: 10.11091JQE.

    [4] [4] Tian P, Liu X, Yi S, et al. Highspeed underwater optical wireless communication using a blue GaNbased microLED[J]. Opt. Express, 2017, 25(2): 11931201.

    [5] [5] Meng W, Xu F, Yu Z, et al. Threedimensional monolithic microLED display driven by atomically thin transistor matrix[J]. Nature Nanotechnol., 2021, 16(11): 12311236.

    [6] [6] Qiu P, Zhu S, Jin Z, et al. Beyond 25Gbps optical wireless communication using wavelength division multiplexed LEDs and microLEDs[J]. Opt. Lett., 2022, 47(2): 317320.

    [7] [7] Zhu S J, Qiu P J, Shan X Y, et al. MicroLED based doublesided emission display and crossmedium communication[J]. IEEE Photonics J., 2022, 14(3): 7326705.

    [8] [8] Zhu S, Qiu P, Qian Z, et al. 2Gbps freespace ultravioletC communication based on a highbandwidth microLED achieved with preequalization[J]. Opt. Lett., 2021, 46(9): 21472150.

    [9] [9] Wang Z, Zhu S, Shan X, et al. Fullcolor microLED display based on a single chip with two types of InGaN/GaN MQWs[J]. Opt. Lett., 2021, 46(17): 43584361.

    [10] [10] Liu X, Lin R, Chen H, et al. Highbandwidth InGaN selfpowered detector arrays toward MIMO visible light communication based on microLED arrays[J]. ACS Photonics, 2019, 6(12): 31863195.

    [11] [11] Lin R, Liu X, Zhou G, et al. InGaN microLED array enabled advanced underwater wireless optical communication and underwater charging[J]. Adv. Optical Materials, 2021, 9(12): 2002211.

    [12] [12] Wang Z, Lin R, Qu D, et al. Ultrafast machine vision with artificial neural network devices based on a GaNbased microLED array[J]. Opt. Express, 2021, 29(20): 3196331973.

    [13] [13] Liu A Y, Bowers J. Photonic integration with epitaxial ⅢⅤ on silicon[J]. IEEE J. of Sel. Top. Quantum Electron., 2018, 24(6): 112.

    [14] [14] Li N, Han K, Spratt W, et al. Ultralowpower subphotonvoltage highefficiency lightemitting diodes[J]. Nature Photonics, 2019, 13(9): 588592.

    [15] [15] Li J, Wu J, Chen L, et al. Onchip integration of Ⅲnitride flipchip lightemitting diodes with photodetectors[J]. J. of Lightwave Technol., 2021, 39(8): 26032608.

    [16] [16] Li K H, Lu H, Fu W Y, et al. Intensitystabilized LEDs with monolithically integrated photodetectors[J]. IEEE Trans. on Industrial Electronics, 2018, 66(9): 74267432.

    [17] [17] Tchernycheva M, Messanvi A, de Luna Bugallo A, et al. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors[J]. Nano Lett., 2014, 14(6): 35153520.

    [18] [18] Hui R, Taherion S, Wan Y, et al. GaNbased waveguide devices for longwavelength optical communications[J]. Appl. Phys. Lett., 2003, 82(9): 13261328.

    [19] [19] Li K H, Cheung Y F, Jin W, et al. InGaN RGB lightemitting diodes with monolithically integrated photodetectors for stabilizing color chromaticity[J]. IEEE Trans. on Industrial Electronics, 2019, 67(6): 51545160.

    [20] [20] Lin P T, Singh V, Lin H Y G, et al. Lowstress silicon nitride platform for midinfrared broadband and monolithically integrated microphotonics[J]. Adv. Optical Materials, 2013, 1(10): 732739.

    [21] [21] Liu C, Cai Y, Jiang H, et al. Monolithic integration of Ⅲnitride voltagecontrolled light emitters with dualwavelength photodiodes by selectivearea epitaxy[J]. Opt. Lett., 2018, 43(14): 34013404.

    [22] [22] Zhou G, Lin R, Qian Z, et al. GaNbased microLEDs and detectors defined by current spreading layer: sizedependent characteristics and their multifunctional applications[J]. J. of Phys. D: Appl. Phys., 2021, 54(33): 335104.

    [23] [23] Huang Y, Guo Z, Huang H, et al. Influence of current density and capacitance on the bandwidth of VLC LED[J]. IEEE Photon. Technol. Lett., 2018, 30(9): 773776.

    [24] [24] Islim M S, Ferreira R X, He X, et al. Towards 10Gb/s orthogonal frequency division multiplexingbased visible light communication using a GaN violet microLED[J]. Photonics Research, 2017, 5(2): A35A43.

    [25] [25] Zheng L, Guo Z, Yan W, et al. Research on a camerabased microscopic imaging system to inspect the surface luminance of the microLED array[J]. IEEE Access, 2018, 6: 5132951336.

    Tools

    Get Citation

    Copy Citation Text

    SHAN Xinyi, ZHU Shijie, WANG Zhou, LIN Runze, CUI Xugao, FANG Zhilai, GU Erdan, TIAN Pengfei. Multifunctional MicroLED Array Monolithic Integration with Luminescence and Photodetection for Display and Visible Light Communication[J]. Semiconductor Optoelectronics, 2022, 43(3): 444

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: May. 30, 2022

    Accepted: --

    Published Online: Aug. 1, 2022

    The Author Email: Pengfei TIAN (pftian@fudan.edu.cn)

    DOI:10.16818/j.issn1001-5868.2022053002

    Topics