Optics and Precision Engineering, Volume. 31, Issue 20, 3034(2023)
Spatial information adaptive regulation and feature alignment for infrared methane instance segmentation
[1] [1] 熊仕富. 红外热成像甲烷气体探测与识别系统关键技术研究[D]. 长春: 长春理工大学, 2018.XIONGS F. Studies on Key Technologies of Infrared Thermal Imaging Detection and Identification System for Methane Gas[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese)
[2] T KEYES, G RIDGE, M KLEIN et al. An enhanced procedure for urban mobile methane leak detection. Heliyon, 6(2020).
[4] L BOAZ, S KAIJAGE, R SINDE. An Overview of Pipeline Leak Detection and Location Systems, 133-137(14).
[5] H JIN, L ZHANG, W LIANG et al. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method. Journal of Loss Prevention in the Process Industries, 27, 74-88(2014).
[6] C B YANG, K D ROMANAK, R C REEDY et al. Soil gas dynamics monitoring at a CO2-EOR site for leakage detection. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3, 351-364(2017).
[7] J H XU, Z W NIE, F Q SHAN et al. Leak detection methods overview and summary, 1034-1050(2012).
[8] RD SCAFUTTO, CR DE SOUZA FILHO. Detection of heavy hydrocarbon plumes (Ethane, propane and Butane) using airborne longwave (7.6-13.5 μm) infrared hyperspectral data. Fuel, 242, 863-870(2019).
[9] K HUANG, X MAO. Detectability of infrared small targets. Infrared Physics & Technology, 53, 208-217(2010).
[10] [10] 丁德武, 申屠灵女, 邹兵, 等. 红外热成像技术在石化装置泄漏隐患检测中的应用[J]. 安全、健康和环境, 2015, 15(12): 17-20.DINGD W, SHENTUL N, ZOUB, et al. Application of infrared thermal imaging technology in detecting leakage of petrochemical plant[J]. Safety Health & Environment, 2015, 15(12): 17-20. (in Chinese)
[11] [11] 鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学 精密工程, 2021, 29(4): 843-853. doi: 10.37188/OPE.20212904.0843JUM R, LUOH B, LIUG Q, et al. Infrared dim and small target detection network based on spatial attention mechanism[J]. Opt. Precision Eng., 2021, 29(4): 843-853. (in Chinese). doi: 10.37188/OPE.20212904.0843
[13] K N XIONG, J B JIANG, Y Y PAN et al. Deep learning approach for detection of underground natural gas micro-leakage using infrared thermal images. Sensors, 22, 5322(2022).
[14] R O MELO, M G F COSTA, C F F C FILHO. Applying convolutional neural networks to detect natural gas leaks in wellhead images. IEEE Access, 8, 191775-191784(2020).
[15] J SHI, Y CHANG, C XU et al. Real-time leak detection using an infrared camera and Faster R-CNN technique. Computers & Chemical Engineering, 135, 106780(2020).
[16] K M HE, G GKIOXARI, P DOLLÁR et al. Mask R-CNN, 2980-2988(22).
[17] Z J HUANG, L C HUANG, Y C GONG et al. Mask scoring R-CNN, 6402-6411(15).
[18] K CHEN, J M PANG, J Q WANG et al. Hybrid task cascade for instance segmentation, 4969-4978(15).
[19] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(22).
[20] X L WANG, T KONG, C H SHEN et al.
[21] X WANG, R ZHANG, T KONG et al. Solov2: Dynamic and fast instance segmentation. Advances in Neural information processing systems, 33, 17721-17732(2020).
[22] Z TIAN, C H SHEN, H CHEN. Conditional Convolutions for Instance Segmentation. Computer Vision - ECCV 2020, 282-298(2020).
[23] D BOLYA, C ZHOU, F Y XIAO et al. YOLACT: Real-Time Instance Segmentation, 9156-9165(2019).
[24] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(27).
[25] M X TAN, R M PANG, Q V LE. EfficientDet: scalable and efficient object detection, 10778-10787(13).
[26] E SHELHAMER, J LONG, T DARRELL. Fully convolutional networks for semantic segmentation, 640-651(2016).
[27] [27] 郝帅, 何田, 马旭, 等. 动态特征优化机制下的跨尺度红外行人检测[J]. 光学 精密工程, 2022, 30(19): 2390-2403. doi: 10.37188/OPE.20223019.2390HAOS, HET, MAX, et al. Cross-scale infrared pedestrian detection based on dynamic feature optimization mechanism[J]. Opt. Precision Eng., 2022, 30(19): 2390-2403.(in Chinese). doi: 10.37188/OPE.20223019.2390
[28] K X WANG, J H LIEW, Y T ZOU et al. PANet: Few-shot image semantic segmentation with prototype alignment, 9196-9205(2019).
[29] M Y FAN, S Q LAI, J S HUANG et al. Rethinking BiSeNet for real-time semantic segmentation, 9711-9720(20).
[30] T H CHENG, X G WANG, S Y CHEN et al. Sparse instance activation for real-time instance segmentation, 4423-4432(18).
[31] T ZHANG, S Q WEI, S P JI. E2EC: an end-to-end contour-based method for high-quality high-speed instance segmentation, 4433-4442(18).
[32] H T LIU, R A RIVERA SOTO, F Y XIAO et al. YolactEdge: real-time instance segmentation on the edge, 9579-9585(2021).
[33] Y X FANG, S S YANG, X G WANG et al. Instances as queries, 6890-6899(10).
Get Citation
Copy Citation Text
Zifen HE, Huizhu CAO, Yinhui ZHANG, Hong ZHUANG. Spatial information adaptive regulation and feature alignment for infrared methane instance segmentation[J]. Optics and Precision Engineering, 2023, 31(20): 3034
Category: Information Sciences
Received: Apr. 3, 2023
Accepted: --
Published Online: Nov. 28, 2023
The Author Email: ZHANG Yinhui (yinhui_z@163.com)