Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 544(2022)

Self-Healing Performance of Concrete Based on Microbial Mineralization: A Review

ZHANG Peng1... GUO Deyang1, BAO Jiuwen1, KOU Hailei2, XUE Shanbin1 and ZHAO Tiejun1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(79)

    [4] [4] DE BELIE N, GRUYAERT E, AL-TABBAA A, et al. A review of self-healing concrete for damage management of structures[J]. Adv Mater Interfaces, 2018, 5(17): 1800074.

    [5] [5] SISOMPHON K, COPUROGLU O, KOENDERS E A B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive[J]. Cem Concr Compos, 2012, 34(4): 566-574.

    [7] [7] AHN T H, KISHI T. Crack self-healing behavior of cementitious composites incorporating various mineral admixtures[J]. J Adv Concr Technol, 2010, 8(2): 171-186.

    [8] [8] GOLLAPUDI U K, KNUTSON C L, BANG S S, et al. A new method for controlling leaching through permeable channels[J]. Chemosphere, 1995, 30(4): 695-705.

    [9] [9] HILL D D, SLEEP B E. Effects of biofilm growth on flow and transport through a glass parallel plate fracture[J]. J Contam Hydrol, 2002, 56(3/4): 227-246.

    [10] [10] MTAYER-LEVREL G L, CASTANIER S, ORIAL G, et al. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony[J]. Sediment Geol, 1999, 126(1): 25-34.

    [11] [11] JONKERS H M. Self Healing Concrete: A Biological Approach[M]. The Netherlands: Springer, 2007: 195-204.

    [12] [12] LV L, GUO P, LIU G, et al. Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive[J]. Cem Concr Compos, 2020, 105: 103445.

    [13] [13] VAN MULLEM T, ANGLANI G, DUDEK M, et al. Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules[J]. Sci Technol Adv Mater, 2020, 21(1): 661-682.

    [14] [14] SOYSAL A, MILLA J, KING G M, et al. Evaluating the self-healing efficiency of hydrogel-encapsulated bacteria in concrete[J]. Transport Res Rec, 2020, 2674(6): 113-123.

    [16] [16] BOQUET E, BORONAT A, RAMOS-CORMENZANA A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246(5434): 527-529.

    [17] [17] REDDY S, RAO M, APARNA P, et al. Performance of standard grade bacterial (Bacillus subtilis) concrete[J]. J Asian Civ Eng, 2010, 3(1): 43-55.

    [20] [20] BAZYLINSKI D A, TRANKEL R B, KONHAUSER K O. Modes of biomineralization of magnetite by microbes[J]. Geomicrobiol, 2007, 24(6): 465-475.

    [22] [22] KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annu Rev Microbiol, 2009, 63(1): 311-334.

    [23] [23] ALOISI G, BOULOUBASSI I, HEIJS S, et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps[J]. Earth Planet Sc Lett, 2002, 203(1): 195-203.

    [24] [24] ZHU T, DITTRICH M. Carbonate precipitation through microbial activities in natural environment and their potential in biotechnology: a review[J]. Front Bioeng Biotech, 2016(4): 1-21.

    [25] [25] MONDAL S, GHOSH A D. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete[J]. Constr Build Mater, 2019, 225: 67-75.

    [26] [26] PECKMAN J, PAUL J, THIEL V. Bacterially mediated formation of diagenetic aragonite and native sulphur in Zechstein carbonates (Upper Permian, Central Germany)[J]. Sediment Geol, 1999, 126(1): 205-222.

    [27] [27] ERSAN Y C, VERBRUGGEN H, GRAEVE I D, et al. Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion[J]. Cem Concr Res, 2016, 83: 19-30.

    [28] [28] DOUGLAS S, BEVERIDGE T J. Mineral formation by bacteria in natural microbial communities[J]. FEMS MIcrobiol Ecol, 1998, 26(2): 79-88.

    [29] [29] BAEUERLEIN E. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano and microstructures[J]. Angew Chem Int Ed, 2003, 34(6): 614-641.

    [30] [30] MOSTAFA S, SEIFAN A K, AYDIN B. Bioconcrete: next generation of self-healing concrete[J]. Appl Microbiol Biot, 2016, 100(6): 2591-2602.

    [31] [31] ZHU Y, WU M, GAO N, et al. Removal of antimonate from wastewater by dissimilatory bacterial reduction: role of the coexisting sulfate[J]. J Hazard Mater, 2018, 341: 36-45.

    [32] [32] QABANY A A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. J Geotech Geoenviron, 2012, 138(8): 992-1001.

    [33] [33] QABANY A A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Geotech, 2013, 63(4): 331-339.

    [34] [34] TOBLER D J, MACLACHLAN E, PHOENIX V R. Microbially mediated plugging of porous media and the impact of differing injection strategies[J]. Ecol Eng, 2012, 42: 270-278.

    [35] [35] MUYNCK W D, BELIE N D, VERSTRAETE W. Microbial carbonate precipitation in construction materials: a review[J]. Ecol Eng, 2010, 6(2): 118-136.

    [36] [36] Tziviloglou E, Wiktor V, Jonkers H M, et al. Selection of nutrient used in biogenic healing agent for cementitious materials[J]. Front Mater, 2017(4): 15.

    [39] [39] QIAN C, WANG J, WANG R, et al. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by bacillus pasteurii[J]. Mat Sci Eng C, 2009, 29(4): 1273-1280.

    [40] [40] FAN Y, DU H, WEI H. Characteristics of soybean urease mineralized calcium carbonate and repair of concrete surface damage[J]. J Wuhan Univ Technol, 2021, 36(1): 70-76.

    [41] [41] MUYNCK W D, DEBROUWER D, BELIE N D, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cem Concr Res, 2008, 38(7): 1005-1014.

    [43] [43] ZHONG L, ISLAM M R. A new microbial plugging process and its impact on fracture remediation[A]. // Proc. of Society of Petroleum Engineers Annual Technical Conference[C]. Dallas, America, 1995: 703-715.

    [44] [44] RAMAKRISHNAN V, BANG S S, DEO K S. A novel technique for repairing cracks in high performance concrete using bacteria[C] //Proc. International Conference on High Performance High Strength Concrete. Perth, Australia, 1998: 597-618.

    [45] [45] WU C, CHU J, WU S, et al. Microbially induced calcite precipitation along a circular flow channel under a constant flow condition[J]. Acta Geotech, 2019, 14(17/18): 673-683.

    [49] [49] TITTELBOOM K V, BELIE N D, MUYNCK W D, et al. Use of bacteria to repair cracks in concrete[J]. Cem Concr Res, 2010, 40(1): 157-166.

    [51] [51] DRY C. Procedures developed for self-repair of polymer matrix composite materials[J]. Compos Struct, 1996, 35(3): 263-269.

    [54] [54] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Auto-nomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797.

    [55] [55] JONKERS H M, THIJSSEN A, MUYZER G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecol Eng, 2010, 36(2): 230-235.

    [56] [56] JONKERS H M. Bacterial-based self-healing concrete[J]. Heron, 2011, 56(1/2): 1-12.

    [59] [59] WANG J Y, DE BELIE N, VERSTRAETE W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J]. J Ind Microbiol Biot, 2012, 39(4): 567-577.

    [61] [61] ERSAN Y C, SILVA F B D, BOON N, et al. Screening of bacteria and concrete compatible protection materials[J]. Constr Build Mater, 2015, 88: 196-203.

    [62] [62] JONKERS H M, SCHLANGEN E. Crack repair by concrete-immobilized bacteria[A]. // SCHMETS A J M, Van der ZWAAG S. Eds. Proc. of First International Conference on Self Healing Materials[C]. The Netherlands, Noordwijk, 2007: 7.

    [63] [63] HUANG H, YE G. Simulation of self-healing by further hydration in cementitious materials[J]. Cem Concr Compos, 2004, 26(8): 460-468.

    [64] [64] FANG X, PAN Z, CHEN A. Analytical models to estimate efficiency of capsule-based self-healing cementitious materials considering effect of capsule shell thickness[J]. Constr Build Mater, 2021, 274: 121999.

    [65] [65] LV Z, CHEN H. Analytical models for determining the dosage of capsules embedded in self-healing materials[J]. Comp Mater Sci, 2013, 68(1): 81-89.

    [66] [66] ZHANG J, LIU Y, FENG T, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete[J]. Constr Build Mater, 2017, 148: 610-617.

    [67] [67] LIU C, XU X, LV Z, et al. Self-healing of concrete cracks by immobilizing microorganisms in recycled aggregate[J]. J Adv Concr Technol, 2020, 18(4): 168-178.

    [68] [68] SU Y, ZHENG T, QIAN C. Application potential of bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete[J]. Constr Build Mater, 2021, 273: 121740.

    [69] [69] SU Y, QIAN C, ZHENG T, et al. A prepared easily bio-carrier based on chitosan modified polypropylene fibers[J]. Biochem Eng J, 2021, 165: 107824.

    [70] [70] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cem Concr Compos, 2011, 33(7): 763-770.

    [71] [71] JONKERS H M. Bacterial-based self-healing concrete[J]. Heron, 2011, 56(1/2): 1-12.

    [75] [75] SIDDIQUE R, SINGH K, SINGH M, et al. Properties of bacterial rice husk ash concrete[J]. Constr Build Mater, 2016, 121: 112-119.

    [77] [77] KAUR N P, MAJHI S, DHAMI N K, et al. Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring[J]. Constr Build Mater, 2020, 242: 118151.

    [78] [78] TZIVILOGLOU E, PAN Z, JONKERS H M, et al. Bio-based self-healing mortar: An experimental and numerical study[J]. J Adv Concr Technol, 2017, 15(9): 536-543.

    [79] [79] RONG H, WEI G, MA G, et al. Influence of bacterial concentration on crack self-healing of cement-based materials[J]. Constr Build Mater, 2020, 244: 118372.

    [80] [80] WANG J, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cem Concr Res, 2014, 56: 139-152.

    [81] [81] ISWARYA N, ADALARASAN R. Experimental investigation on strength and durability of light weight bacterial concrete[J]. Mater Today: Proc, 2020, 22: 2808-2813.

    [82] [82] JAFARNIA M S, SARYAZDI M K, MOSHTAGHIOUN S M. Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite[J]. Constr Build Mater, 2020, 242: 118059.

    [83] [83] JENA S, BASA B, PANDA K C, et al. Impact of bacillus subtilis bacterium on the properties of concrete[J]. Mater Today: Proc, 2020, 32: 651-656.

    [84] [84] CHAHAL N, SIDDIQUE R, RAJOR A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete[J]. Constr Build Mater, 2012, 28(1): 351-356.

    [85] [85] RAMAKRISHNAN V, PANCHALAN R K, BANG S S, et al. Improvement of concrete durability by bacterial mineral precipitation[C]//Proc. ICF. 2005, 11: 357-367.

    [86] [86] REDDY V S, KUMAR J K S, RAO S M V, et al. Studies on permeability of self-healing built-in bacteria concrete[J]. Int J Rec Tech Eng, 2013, 1(6): 119-125.

    [87] [87] DURGA C S S, RUBEN N, CHAND M S R, et al. Performance studies on rate of self healing in bio concrete[J]. Mater Today: Proc, 2020, 27: 158-162.

    [88] [88] PARASHAR A K, GUPTA N, KISHORE K, et al. An experimental investigation on mechanical properties of calcined clay concrete embedded with bacillus subtilis[J]. Mater Today: Proc, 2019, 19(5): 1-6.

    [89] [89] MOHAMMED H, ORTONEDA-PEDROLA M, NAKOUTI I, et al. Experimental characterisation of non-encapsulated bio-based concrete with self-healing capacity[J]. Constr Build Mater, 2020, 256: 119411.

    [90] [90] XU J, WANG X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material[J]. Constr Build Mater, 2018, 167: 1-14.

    [91] [91] CHAHAL N, SIDDIQUE R, RAJOR A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume[J]. Constr Build Mater, 2012, 37(1): 645-651.

    [92] [92] RAO M V S, REDDY V S, SASIKALA C. Performance of microbial concrete developed using bacillus subtilus JC3[J]. J Inst Eng (India): Series A, 2017, 98(4): 501-510.

    [93] [93] ACHAL V, MUKERJEE A, REDDY M S. Biogenic treatment improves the durability and remediates the cracks of concrete structures[J]. Constr Build Mater, 2013, 48(19): 1-5.

    [94] [94] BHASKAR S, HOSSAIN K M A, LACHEMI M, et al. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites[J]. Cem Concr Compos, 2017, 82: 23-33.

    [95] [95] PARASTEGARI N, MOSTOFINEJAD D, POURSINA D. Use of bacteria to improve electrical resistivity and chloride penetration of air-entrained concrete[J]. Constr Build Mater, 2019, 210: 588-595.

    [96] [96] ZHU T, PAULO C, MERROUN M L, et al. Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration[J]. Ecol Eng, 2015, 82: 459-468.

    [97] [97] NEMATI M, GREENE E A, VOORDOUW G. Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option[J]. Process Biochem, 2005, 40(2): 925-933.

    [99] [99] CHOI S, WANG K, WEN Z, et al. Mortar crack repair using microbial induced calcite precipitation method[J]. Cem Concr Compos, 2017, 83: 209-221.

    [101] [101] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Western Australia: Murdoch University, 2004.

    [104] [104] PAASSEN L A V, DAZA C M, STAAL M, ET AL. Potential soil reinforcement by biological denitrification[J]. Ecol Eng, 2010, 36(2): 168-175.

    [105] [105] ERSAN Y C, GRUYAERT E, LOUIS G, et al. Self-protected nitrate reducing culture for intrinsic repair of concrete cracks[J]. Front Microbiol, 2015(6): 1-15.

    [106] [106] DAVIES R, TEALL O, PILEGIS M, et al. Large scale application of self-healing concrete: design, construction, and testing[J]. Front Mater, 2018(5): 51.

    [107] [107] QIAN C, ZHENG T, RUI Y. Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: Theory, technology and engineering applications-A review[J]. Sci China Technol Sci, 2021, 64(10): 2067-2083.

    CLP Journals

    [1] YANG Jin, DUAN Xiaopeng, QIU Jinyin, SU Ying, HE Xingyang. Application of Superabsorbent Polymer Hydrogel to Crack Self-Sealing of Cement-Based Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 3015

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Peng, GUO Deyang, BAO Jiuwen, KOU Hailei, XUE Shanbin, ZHAO Tiejun. Self-Healing Performance of Concrete Based on Microbial Mineralization: A Review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 544

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 23, 2021

    Accepted: --

    Published Online: Nov. 23, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics