Acta Optica Sinica, Volume. 42, Issue 15, 1528002(2022)
Rydberg Atom-Based Ultra-Broadband Radio Frequency Sensor from 100 kHz to 40 GHz
[1] Chu L J. Physical limitations of omni-directional antennas[J]. Journal of Applied Physics, 19, 1163-1175(1948).
[2] Yoshida S, Reinhold C O, Burgdörfer J et al. Photoexcitation of n≃305 Rydberg states in the presence of an rf drive field[J]. Physical Review A, 86, 043415(2012).
[3] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).
[4] Kumar S, Fan H, Kübler H et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).
[5] Liao K Y, Tu H T, Yang S Z et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 101, 053432(2020).
[6] Ripka F, Amarloo H, Erskine J et al. Application-driven problems in Rydberg atom electrometry[J]. Proceedings of SPIE, 11700, 117002Y(2021).
[7] Thaicharoen N, Moore K R, Anderson D A et al. Electromagnetically-induced transparency, absorption, and microwave field sensing in a Rb vapor cell with a three-color all-infrared laser system[J]. Physical Review A, 100, 063427(2019).
[8] Liao K Y, Tu H T, Zhang X D et al. Rydberg atom based microwave sensing and communication[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 51, 074202(2021).
[9] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).
[10] Gordon J A, Simons M T, Haddab A H et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances, 9, 045030(2019).
[11] Hao L P, Xue Y M, Fan J B et al. Precise measurement of a weak radio frequency electric field using a resonant atomic probe[J]. Chinese Physics B, 29, 033201(2020).
[12] Fan J B, Hao L P, Bai J X et al. High-sensitive microwave sensor and communication based on Rydberg atoms[J]. Acta Physica Sinica, 70, 063201(2021).
[13] Liu X B, Jia F D, Zhang H Y et al. Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry[J]. AIP Advances, 11, 085127(2021).
[14] Jia F D, Liu X B, Mei J et al. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field[J]. Physical Review A, 103, 063113(2021).
[15] Robinson A K, Artusio-Glimpse A B, Simons M T et al. Atomic spectra in a six-level scheme for electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Physical Review A, 103, 023704(2021).
[16] Simons M T, Artusio-Glimpse A B, Holloway C L et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 104, 032824(2021).
[17] Prajapati N, Robinson A K, Berweger S et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).
[18] Anderson D A, Paradis E G, Raithel G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 113, 073501(2018).
[19] Sedlacek J A, Schwettmann A, Kübler H et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical Review Letters, 111, 063001(2013).
[20] Bussey L W, Winterburn A, Menchetti M et al. Rydberg RF receiver operation to track RF signal fading and frequency drift[J]. Journal of Lightwave Technology, 39, 7813-7820(2021).
[21] Simons M T, Haddab A H, Gordon J A et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).
[23] Robinson A K, Prajapati N, Senic D et al. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor[J]. Applied Physics Letters, 118, 114001(2021).
[24] Simons M T, Gordon J A, Holloway C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied Optics, 57, 6456-6460(2018).
[25] Holloway C L, Gordon J A, Jefferts S et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 62, 6169-6182(2014).
[26] Cardman R, Gonçalves L F, Sapiro R E et al. Atomic 2D electric field imaging of a Yagi-Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument[J]. Advanced Optical Technologies, 9, 305-312(2020).
[27] Holloway C L, Simons M T, Haddab A H et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 63, 63-76(2021).
[28] Meyer D H, Castillo Z A, Cox K C et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B, 53, 034001(2020).
[29] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 15, 014053(2021).
[30] Meyer D H, Cox K C, Fatemi F K et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 112, 211108(2018).
[31] Cox K C, Meyer D H, Fatemi F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).
[32] Otto J S, Hunter M K, Kjærgaard N et al. Data capacity scaling of a distributed Rydberg atomic receiver array[J]. Journal of Applied Physics, 129, 154503(2021).
[33] Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 69, 2455-2462(2021).
[34] Song Z F, Liu H P, Liu X C et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 27, 8848-8857(2019).
[35] Holloway C L, Simons M T, Gordon J A et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 18, 1853-1857(2019).
[36] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 13, 054034(2020).
[37] Anderson D A, Paradis E, Raithel G et al. High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element[C], 18042205(2018).
[38] Li W, Zhang C G, Zhang H et al. Power-frequency electric field measurement based on AC-Stark effect of Rydberg atoms[J]. Laser & Optoelectronics Progress, 58, 1702002(2021).
[39] Ji J W, Cheng H N, Zhang Z et al. Automatic laser frequency stabilization system for transportable 87Rb fountain clock[J]. Acta Optica Sinica, 40, 2214002(2020).
[40] Hong Y, Hou X, Chen D J et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 48, 2101003(2021).
Get Citation
Copy Citation Text
Kai Yang, Qiang An, Jiawei Yao, Ruiqi Mao, Yi Lin, Yi Liu, Yunqi Fu. Rydberg Atom-Based Ultra-Broadband Radio Frequency Sensor from 100 kHz to 40 GHz[J]. Acta Optica Sinica, 2022, 42(15): 1528002
Category: Remote Sensing and Sensors
Received: Jan. 7, 2022
Accepted: Feb. 23, 2022
Published Online: Aug. 4, 2022
The Author Email: Yi Lin (linyi@nudt.edu.cn), Yi Liu (yi_liu@nudt.edu.cn), Yunqi Fu (yunqifu@nudt.edu.cn)