Optics and Precision Engineering, Volume. 27, Issue 8, 1836(2019)
Image style transfer based on improved CycleGAN
[1] [1] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[6] [6] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks [C]. Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: CVPR, 2016: 2414-2423.
[7] [7] JOHNSON J, ALAHI A, LI F. Perceptual losses for real-time style transfer and super-resolution [C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands: ECCV, 2016: 694-711.
[8] [8] DANIEL H, IKHSANUL H, IKUO K, et al.. Fast neural style transfer for motion data [J]. IEEE Computer Graphics and Applications, 2017, 37(4): 42-49.
[9] [9] MICHAE E, PEYMAN M. Style transfer via texture synthesis [J]. IEEE Transactions on Image Processing, 2017, 26(5): 2338-2351.
[10] [10] MANUEL R, ALEXEY D, THOMAS B. Artistic style transfer for videos and spherical images [J]. International Journal of Computer Vision, 2018, 126(11): 1199-1219.
[11] [11] DU ZH L, ZHAO ZH W, LI X L, et al.. Flying people: high-fidelity image warping via killing vector fields [J]. Journal of Computer-Aided Design and Computer Graphics, 2016, 28(8): 1333-1340.
[12] [12] ISOLA P, ZHU J Y, ZHOU T, et al.. Image-to-image translation with conditional adversarial networks [C]. Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA: CVPR, 2017: 1125-1134.
[13] [13] LIN Y L, DAI X Y, LI L, et al.. The new frontier of AI research: generative adversarial networks [J]. Acta Automatica Sinica, 2018, 44(5): 775-792. (in Chinese)
[14] [14] WANG K F, GOU CH, DUAN Y J, et al.. Generative adversarial networks: the state of the art and beyond [J]. Acta Automatica Sinica, 2017, 43(3): 321-332. (in Chinese)
[15] [15] WANG G M, QIAO J F, WANG L. A generative adversarial network based on energy function [J]. Acta Automatica Sinica, 2018, 44(5): 793-803. (in Chinese)
[16] [16] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [C]. Proceedings of the 4th International Conference on Learning Representations, Puerto Rico, USA: ICLR, 2016: 580-596.
[17] [17] ZHU J Y, PARK T, ISOLA P, et al.. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]. Proceedings of the 16th IEEE International Conference on Computer Vision, Venice, Italy: ICCV, 2017: 2223-2232.
[18] [18] HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition [C]. Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: CVPR, 2016: 770-778.
[19] [19] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]. Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA: CVPR, 2015: 3431-3440.
[20] [20] HUANG G, LIU Z, MAATEN L, et al.. Densely connected convolutional networks [C]. Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA: CVPR, 2017: 4700-4708.
[21] [21] ZHANG ZH CH, LIANG X K, DONG X, et al.. A sparse-view CT reconstruction method based on combination of densenet and deconvolution [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407-1417.
[22] [22] IOFFES, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]. Proceedings of the 32th International Conference on Machine Learning, Lille, France: ICML, 2015: 448-456.
[23] [23] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [C]. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA: AISTATS, 2011: 315-323.
[24] [24] ZEILER M D, KRISHNAN D, TAYLOR G W, et al.. Deconvolutional networks [C]. Proceedings of the 23th IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA: CVPR, 2010: 2528-2535.
[25] [25] YU X, FATIH P. Imagining the unimaginable faces by deconvolutional networks [J]. IEEE Transactions on Image Processing, 2018: 2747-2761.
[26] [26] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia: ICML, 2017: 214-233.
Get Citation
Copy Citation Text
DU Zhen-long, SHEN Hai-yang, SONG Guo-mei, LI Xiao-li. Image style transfer based on improved CycleGAN[J]. Optics and Precision Engineering, 2019, 27(8): 1836
Category:
Received: Dec. 11, 2018
Accepted: --
Published Online: Jan. 19, 2020
The Author Email: Zhen-long DU (duzhl@njtech.edu.cn)